Skip to main content

Advertisement

Log in

Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Climate change will impact forest ecosystems, their biodiversity and the livelihoods they sustain. Several adaptation and mitigation strategies to counteract climate change impacts have been proposed for these ecosystems. However, effective implementation of such strategies requires a clear understanding of how climate change will influence the future distribution of forest ecosystems. This study uses maximum entropy modelling (MaxEnt) to predict environmentally suitable areas for cork oak (Quercus suber) woodlands, a socio-economically important forest ecosystem protected by the European Union Habitats Directive. Specifically, we use two climate change scenarios to predict changes in environmental suitability across the entire geographical range of the cork oak and in areas where stands were recently established. Up to 40 % of current environmentally suitable areas for cork oak may be lost by 2070, mainly in northern Africa and southern Iberian Peninsula. Almost 90 % of new cork oak stands are predicted to lose suitability by the end of the century, but future plantations can take advantage of increasing suitability in northern Iberian Peninsula and France. The predicted impacts cross-country borders, showing that a multinational strategy, will be required for cork oak woodland adaptation to climate change. Such a strategy must be regionally adjusted, featuring the protection of refugia sites in southern areas and stimulating sustainable forest management in areas that will keep long-term suitability. Afforestation efforts should also be promoted but must consider environmental suitability and land competition issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaheim A, Chaturvedi RK, Sagadevan AD (2011) Integrated modelling approaches to analysis of climate change impacts on forests and forest management. Mitig Adapt Strateg Glob Change 16:247–266

    Article  Google Scholar 

  • Acácio V, Dias FS, Catry FX et al (2016) Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. Glob Change Biol (in press). doi:10.1111/gcb.13487

    Google Scholar 

  • Acácio V, Holmgren M, Jansen PA et al (2007) Multiple recruitment limitation causes arrested succession in Mediterranean cork oak systems. Ecosystems 10:1220–1230

    Article  Google Scholar 

  • Afreen S, Sharma N, Chaturvedi RK et al (2011) Forest policies and programs affecting vulnerability and adaptation to climate change. Mitig Adapt Strateg Glob Change 16:177–197

    Article  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA et al (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Araujo MB, Alagador D, Cabeza M et al (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  Google Scholar 

  • Attorre F, Alfo M, De Sanctis M et al (2011) Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl Veg Sci 14:242–255

    Article  Google Scholar 

  • Autoridade Florestal Nacional (2009) IF5 - Inventário Florestal Nacional de 2005/2006. Autoridade Florestal Nacional, Lisboa, Portugal

    Google Scholar 

  • Barbet-Massin M, Thuiller W, Jiguet F (2010) How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33:878–886

    Article  Google Scholar 

  • Barkhordarian A, von Storch H, Bhend J (2013) The expectation of future precipitation change over the Mediterranean region is different from what we observe. Clim Dynam 40:225–244

    Article  Google Scholar 

  • Barry P, Celles JC, Faurel L (1974) Carte International du Tapis Vegetal et des Conditions Écologiques (1/1 000 000) et notice explicative. Société d’Histoire Naturelle de l’Afrique du Nord, Algérie

    Google Scholar 

  • Benayas JMR, Bullock JM, Newton AC (2008) Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Front Ecol Environ 6:329–336

    Article  Google Scholar 

  • Benito Garzon M, Sanchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178

    Article  Google Scholar 

  • Berrahmouni N, Escuté X, Regato P et al (2007) Beyond cork—a wealth of resources for people and nature. WWF Mediterranean, Rome, Italy

    Google Scholar 

  • Berrahmouni N, Regato P, Ellatifi M et al (2009) Ecoregional planning for biodiversity conservation. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, USA

    Google Scholar 

  • Besson CK, Lobo-do-Vale R, Rodrigues ML et al (2014) Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agric For Meteorol 184:230–242

    Article  Google Scholar 

  • Bonfiglio A, Camaioni B, Coderoni S et al (2016) Where does EU money eventually go? The distribution of CAP expenditure across the European space. Empirica 43:693–727

    Article  Google Scholar 

  • Buckley LB, Urban MC, Angilletta MJ et al (2010) Can mechanism inform species' distribution models? Ecol Lett 13:1041–1054

    Article  Google Scholar 

  • Bugalho M, Plieninger T, Aronson J et al (2009) Open woodlands: a diversity of uses (and overuses). In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, USA

    Google Scholar 

  • Bugalho M, Silva LN (2014) Promoting sustainable management of cork oak landscapes through payments for ecosystem services: the WWF Green Heart of Cork project. Unasylva 242:29–30

    Google Scholar 

  • Bugalho MN, Caldeira MC, Pereira JS et al (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286

    Article  Google Scholar 

  • Bugalho MN, Dias FS, Brinas B et al (2016) Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes. Agroforest Syst 90:35–44

    Article  Google Scholar 

  • Caldeira MC, Ibanez I, Nogueira C et al (2014) Direct and indirect effects of tree canopy facilitation in the recruitment of Mediterranean oaks. J Appl Ecol 51:349–358

    Article  Google Scholar 

  • Caldeira MC, Lecomte X, David TS et al (2015) Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates. Sci Rep 5:15110

    Article  Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  Google Scholar 

  • Cavender-Bares J, Cortes P, Rambal S et al (2005) Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytol 168:597–611

    Article  Google Scholar 

  • Cook BI, Anchukaitis KJ, Touchan R et al (2016) Spatiotemporal drought variability in the Mediterranean over the last 900 years. J Geophys Res Atmos 121:2060–2074

    Article  Google Scholar 

  • Correia RA, Franco AMA, Palmeirim JM (2015a) Role of the Mediterranean Sea in differentiating European and North African woodland bird assemblages. Community Ecol 16:106–114

    Article  Google Scholar 

  • Correia RA, Haskell WC, Gill JA et al (2015b) Topography and aridity influence oak woodland bird assemblages in southern Europe. For Ecol Manag 354:97–103

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S et al (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Article  Google Scholar 

  • de Bremond A, Engle NL (2014) Adaptation policies to increase terrestrial ecosystem resilience: potential utility of a multicriteria approach. Mitig Adapt Strateg Glob Change 19:331–354

    Article  Google Scholar 

  • de Dios VR, Fischer C, Colinas C (2007) Climate change effects on Mediterranean forests and preventive measures. New Forest 33:29–40

    Article  Google Scholar 

  • Dias FS, Bugalho MN, Cerdeira JO et al (2013) Is forest certification targeting areas of high biodiversity in cork oak savannas? Biodivers Conserv 22:93–112

    Article  Google Scholar 

  • Diáz M, Campos P, Pulido FJ (1997) The Spanish dehesas: a diversity in land-use and wildlife. In: Pain DJ, Pienkowski MW (eds) Farming and birds in Europe. Academic Press, Cambridge, UK

    Google Scholar 

  • Dirección General de Medio Natural y Política Forestal (2009) Mapa Forestal de España, Escala 1:200.000. Ministerio de Medio Ambiente, y Medio Rural y Marino, Madrid, España

  • Doblas-Miranda E, Martinez-Vilalta J, Lloret F et al (2015) Reassessing global change research priorities in Mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Glob Ecol Biogeogr 24:25–43

    Article  Google Scholar 

  • Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • ESRI (2011) ArcGIS Desktop: release 10. Environmental Systems Research Institute, Redlands, California, USA

    Google Scholar 

  • FAO/IIASA/ISRIC/ISS-CAS/JRC (2012) Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707

    Article  Google Scholar 

  • Godinho S, Guiomar N, Machado R et al (2016) Assessment of environment, land management, and spatial variables on recent changes in montado land cover in southern Portugal. Agroforest Syst 90:177–192

    Article  Google Scholar 

  • Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification (2005) Inventaire Foréstier National. Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification, Rabat, Maroc

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  • Hidalgo PJ, Marin JM, Quijada J et al (2008) A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. For Ecol Manag 255:25–34

    Article  Google Scholar 

  • Hijmans RJ (2015) Raster: geographic data analysis and modeling. R package version 2:5–2

    Google Scholar 

  • Hijmans RJ, Philips S, Leathwick J, Elith J (2015) dismo: species distribution modeling. R package version 1.0–12

  • Hutchinson M, Xu T, Houlder D et al. (2009) ANUCLIM 6.0 user’s guide. Australian National University, Fenner School of Environment and Society

  • Institut National de l’Information Géographique et Forestiére (2010) Inventaire Forestier Nationale. Institut National de l’Information Géographique et Forestiére, Saint-Mandé, France

    Google Scholar 

  • Jimenez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol 31:361–369

    Article  Google Scholar 

  • Jimenez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol Lett 12:334–350

    Article  Google Scholar 

  • Khaldi A (2004) Carte de repartition du chêne liege en Tunisie. Elaborée d’après IFPN-DGF, 1995

  • Klausmeyer KR, Shaw MR (2009) Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS One 4:e6392

    Article  Google Scholar 

  • Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295

    Article  Google Scholar 

  • Leal AI, Correia RA, Granadeiro JP et al (2011) Impact of cork extraction on birds: relevance for conservation of Mediterranean biodiversity. Biol Conserv 144:1655–1662

    Article  Google Scholar 

  • Linares AM (2007) Forest planning and traditional knowledge in collective woodlands of Spain: the dehesa system. For Ecol Manag 249:71–79

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manag 259:698–709

    Article  Google Scholar 

  • Lunda HG, Iremonger S (2000) Omissions, commissions, and decisions: the need for integrated resource assessments. For Ecol Manag 128:3–10

    Article  Google Scholar 

  • Merow C, Smith MJ, Edwards TC et al (2014) What do we gain from simplicity versus complexity in species distribution models? Ecography 37:1267–1281

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M et al (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901-96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • Nyong A, Adesina F, Osman Elasha B (2007) The value of indigenous knowledge in climate change mitigation and adaptation strategies in the African Sahel. Mitig Adapt Strateg Glob Change 12:787–797

    Article  Google Scholar 

  • Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wires Clim Change 5:317–335

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Pausas JG, Pereira JS, Aronson J (2009) The tree. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, USA

    Google Scholar 

  • Pereira H (2007) The Cork oak. In: Pereira H (ed) Cork: biology, production and uses. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Pereira H, Tomé M (2004) Cork oak. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest sciences. Elsevier, Oxford, UK

    Google Scholar 

  • Plieninger T, Rolo V, Moreno G (2010) Large-scale patterns of Quercus ilex, Quercus suber, and Quercus pyrenaica regeneration in Central-Western Spain. Ecosystems 13:644–660

    Article  Google Scholar 

  • Pons J, Pausas JG (2006) Oak regeneration in heterogeneous landscapes: the case of fragmented Quercus suber forests in the eastern Iberian Peninsula. Forest Ecol Manag 231:196–204

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Ravindranath NH (2007) Mitigation and adaptation synergy in forest sector. Mitig Adapt Strateg Glob Change 12:843–853

    Article  Google Scholar 

  • Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274–281

    Article  Google Scholar 

  • Rowland EL, Davison JE, Graumlich LJ (2011) Approaches to evaluating climate change impacts on species: a guide to initiating the adaptation planning process. Environ Manag 47:322–337

    Article  Google Scholar 

  • Salinas CX, Mendieta J (2013a) The cost of mitigation strategies for agricultural adaptation to global change. Mitig Adapt Strateg Glob Change 18:933–941

    Article  Google Scholar 

  • Salinas CX, Mendieta J (2013b) Effectiveness of the strategies to combat land degradation and drought. Mitig Adapt Strateg Glob Change 18:1269–1281

    Article  Google Scholar 

  • Santos MJ, Thorne JH (2010) Comparing culture and ecology: conservation planning of oak woodlands in Mediterranean landscapes of Portugal and California. Environ Conserv 37:155–168

    Article  Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P et al (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecol Manag 132:97–109

    Article  Google Scholar 

  • Schmitt P (2016) Trial plantation to slash cork growing times. The Drinks Business. https://www.thedrinksbusiness.com/2016/06/trial-plantation-to-slash-cork-growing-times. Cited 24 Nov 2016

  • Serrasolses I, Pérez-Devesa M, Vilagrosa A et al (2009) Soil properties constraining cork oak distribution. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, USA

    Google Scholar 

  • Settele J, Scholes R, Betts R et al (2014) Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Stocker TF, Qin D, Plattner G-K et al. (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK and New York, USA

  • Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Glob Ecol Biogeogr 20:904–914

    Article  Google Scholar 

  • Thuiller W, Brotons L, Araujo MB et al (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172

    Article  Google Scholar 

  • Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349:814–818

    Article  Google Scholar 

  • Vessella F, Schirone B (2013) Predicting potential distribution of Quercus suber in Italy based on ecological niche models: conservation insights and reforestation involvements. Forest Ecol Manag 304:150–161

    Article  Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW et al (2011) Climate change and plant regeneration from seed. Glob Chang Biol 17:2145–2161

    Article  Google Scholar 

  • Winkel G, Sotirov M (2016) Whose integration is this? European forest policy between the gospel of coordination, institutional competition, and a new spirit of integration. Environ Plann C 34:496–514

    Article  Google Scholar 

  • Zomer RJ, Trabucco A, Bossio DA et al (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80

    Article  Google Scholar 

Download references

Acknowledgements

Fundação para a Ciência e Tecnologia (FCT) supported R. A. Correia through a PhD grant (SFRH/BD/66150/2009) and M. N. Bugalho through principal investigator contract (IF/01171/2014). We are thankful to Robert K. Dixon, Richard J. Ladle and four anonymous referees, whose comments helped to improve the initial version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Correia.

Electronic supplementary material

Table S1

(DOCX 14 kb)

Table S2

(DOCX 20 kb)

Fig. S1

(DOCX 381 kb)

Fig. S2

(DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, R.A., Bugalho, M.N., Franco, A.M.A. et al. Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat. Mitig Adapt Strateg Glob Change 23, 371–386 (2018). https://doi.org/10.1007/s11027-017-9738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-017-9738-z

Keywords

Navigation