Costs and benefits of differences in the timing of greenhouse gas emission reductions

  • Annemiek K. Admiraal
  • Andries F. Hof
  • Michel G. J. den Elzen
  • Detlef P. van Vuuren
Original Article

Abstract

Most modelling studies that explore long-term greenhouse gas mitigation scenarios focus on cost-efficient emission pathways towards a certain climate target, like the internationally agreed target to keep global temperature increase below 2 °C compared to pre-industrial levels (the 2 °C climate target). However, different timing of reductions lead to different transient temperature increase over the course of the century and subsequently to differences in the time profiles of not only the mitigation costs but also adaptation costs and residual climate change damage. This study adds to the existing literature by focussing on the implication of these differences for the evaluation of a set of three mitigation scenarios (early action, gradual action and delayed action), all three limiting global temperature increase below 2 °C above pre-industrial levels, using different discount rates. The study shows that the gradual mitigation pathway is, for these discount rates, preferred over early or delayed action in terms of total climate costs and net benefits. The relative costs and benefits of the early or delayed mitigation action scenarios, in contrast, do strongly depend on the discount rate applied. For specific discount rates, these pathways might therefore be preferred for other reasons, such as reducing long-term uncertainty in climate costs by early action.

Keywords

Adaptation costs Avoided damage Climate mitigation Discount rate Mitigation costs Net benefits Residual damage 

References

  1. Agrawala S, Fankhauser S (eds.) (2008) Economic aspects of adaptation to climate change: costs, benefits and policy instruments. OECD, Paris. Available via http://www.oecd.org/env/cc/economicaspectsofadaptationtoclimatechangecostsbenefitsandpolicyinstruments.htm. Cited 20 May 2014
  2. Agrawala S, Bosello F, Carraro C et al (2011) Plan or react? Analysis of adaptation costs and benefits using integrated assessment models. Clim Chang Econ 2:175–208CrossRefGoogle Scholar
  3. Arrow K, Cropper M, Gollier C et al (2013) Determining benefits and costs for future generations. Science 341:349–350CrossRefGoogle Scholar
  4. Bosello F, Carraro C, De Cian E (2013) Adaptation can help mitigation: an integrated approach to post-2012 climate policy. Environ Dev Econ 18:270–290CrossRefGoogle Scholar
  5. Burniaux JM, Chateau J (2010) An overview of the OECD ENV-linkages model. OECD, Paris. Available via http://www.oecd.org/env/45334643.pdf
  6. de Bruin KC, Dellink RB, Agrawala S (2009a) Economic aspects of adaptation to climate change: integrated assessment modelling of adaptation costs and benefits. OECD Environment Working Papers No. 6. OECD, ParisCrossRefGoogle Scholar
  7. de Bruin KC, Dellink RB, Tol RSJ (2009b) AD-DICE: an implementation of adaptation in the DICE model. Clim Chang 95:63–81CrossRefGoogle Scholar
  8. den Elzen MGJ, Lucas PL, van Vuuren DP (2008) Regional abatement action and costs under allocation schemes for emission allowances for achieving low CO2-equivalent concentrations. Clim Chang 90:243–268CrossRefGoogle Scholar
  9. den Elzen M, Hof A, Mendoza Beltran A et al (2010) The Copenhagen accord: abatement costs and carbon prices resulting from submissions. Environ Sci Policy 14:28–39CrossRefGoogle Scholar
  10. den Elzen MGJ, Hof A, Mendoza Beltran A et al (2013) Implications of long-term global and developed country reduction targets for developing countries. Mitig Adapt Strateg Glob Chang 18:491–512CrossRefGoogle Scholar
  11. Garibaldi JA (2014) The economics of boldness: equity, action, and hope. Clim Policy 14:82–101CrossRefGoogle Scholar
  12. Haites E, Yamin F, Höhne N (2013) Possible elements of a 2015 legal agreement on climate change. IDDRI, Paris. Available via http://www.iddri.org/Publications/Collections/Idees-pour-le-debat/WP1613_EH%20FY%20NH_legal%20agreement%202015.pdf
  13. Hof AF, de Bruin KC, Dellink RB et al (2009) The effect of different mitigation strategies on international financing of adaptation. Environ Sci Policy 12:832–843CrossRefGoogle Scholar
  14. Hof AF, den Elzen MGJ, Roelfsema M (2013) The effect of updated pledges and business-as-usual projections, and new agreed rules on expected global greenhouse gas emissions in 2020. Environ Sci Policy 33:308–319CrossRefGoogle Scholar
  15. Hohne N, Van Breevoort P, Deng Y et al. (2013) Feasibility of GHG emissions phase-out by mid-century. Ecofys, Germany. Available via http://www.ecofys.com/files/files/ecofys-2013-feasibility-ghg-phase-out-2050.pdf
  16. Hope C (2006) The marginal impact of CO2 from PAGE2002: an integrated assessment model incorporating the IPCC’s five reasons for concern. Integr Assess J Bridg Sci Policy 6:19–56Google Scholar
  17. IPCC (2014) Climate Change 2014: mitigation of climate change. IPCC working group III contribution to AR5. Available via http://www.ipcc.ch/report/ar5/wg3/
  18. Jakob M, Luderer G, Steckel J et al (2012) Time to act now? Assessing the costs of delaying climate measures and benefits of early action. Clim Chang 114:79–99CrossRefGoogle Scholar
  19. JRC/PBL (2014) Emission database for global atmospheric research (EDGAR)—release version 4.2 FT2012. Bilthoven, Netherlands: European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental Assessment Agency. Available via http://edgar.jrc.ec.europa.eu
  20. Kriegler E, Tavoni M, Aboumahboub T et al (2013a) What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Clim Chang Econ 4:1340008CrossRefGoogle Scholar
  21. Kriegler E, Weyant JP, Blanford GJ et al (2013b) The role of technology for achieving climate policy objectives: overview of the EMF 27 Study on Global Technology and Climate Policy Strategies. Clim Chang 123:353–367CrossRefGoogle Scholar
  22. Kriegler E, Riahi K, Petermann N et al. (2014) Assessing pathways toward ambitious climate targets at the global and European levels: a synthesis of results from the AMPERE project. FP7 AMPERE Project. Available via http://ampere-project.eu/web/images/Final_Conference/ampere_synthesis_5-2014-compact.pdf
  23. Lucas PL, van Vuuren DP, Olivier JGJ et al (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environ Sci Policy 10:85–103CrossRefGoogle Scholar
  24. Luderer G, Pietzcker RC, Bertram C et al (2013) Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ Res Lett 8:034033CrossRefGoogle Scholar
  25. Meinshausen M, Raper SCB, Wigley TML (2011) Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos Chem Phys 11:1417–1456CrossRefGoogle Scholar
  26. Nordhaus WD, Boyer J (2000) Warming the world: economic models of global warming. MIT Press, Cambridge, Massachusetts. Available via http://eml.berkeley.edu/~saez/course131/Warm-World00.pdf
  27. OECD (2012) OECD environmental outlook to 2050. OECD, Paris. Available via http://www.oecd.org/env/indicators-modelling-outlooks/oecdenvironmentaloutlookto2050theconsequencesofinaction.htm. Cited 10 May 2014
  28. Riahi K, Kriegler E, Johnson N et al (2013) Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol Forecast Soc Chang 90:8–23CrossRefGoogle Scholar
  29. Rogelj J, McCollum D, Reisinger A et al (2013) Probabilistic cost estimates for climate change mitigation. Nature 493:79–83CrossRefGoogle Scholar
  30. Stehfest E, Van Vuuren DP, Kram T et al. (2014) Integrated assessment of global environmental change with IMAGE 3.0. Model description and policy applications. PBL Netherlands Environmental Assessment Agency, The Hague. Available via http://www.pbl.nl/sites/default/files/cms/PBL-2014-Integrated_Assessment_of_Global_Environmental_Change_with_IMAGE_30-735.pdf
  31. Stern N (2006) The economics of climate change. The Stern Review. Cambridge University Press, CambridgeGoogle Scholar
  32. UNEP (2013) The emissions gap report 2013. A UNEP synthesis report. UNEPGoogle Scholar
  33. UNFCCC (2009) Copenhagen accord. Available via http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf
  34. UNFCCC (2010) Decision 1/CP.16, the Cancun agreements. UNFCCC document FCCC/CP/2010/7/Add.1, http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf#page=2
  35. van Vuuren DP, Van Ruijven B, Hoogwijk M et al. (2006) TIMER 2.0: model description and application. In: Bouwman AF, Kram T, Klein Goldewijk K (eds.) Integrated modelling of global environmental change. An overview of IMAGE 2.4. Netherlands Environmental Assessment Agency, Bilthoven. Available via www.pbl.nl/en
  36. van Vuuren DP, den Elzen MGJ, Lucas PL et al (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Chang 81:119–159CrossRefGoogle Scholar
  37. van Vuuren DP, Stehfest E, den Elzen MGJ et al (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim Chang 109:95–116CrossRefGoogle Scholar
  38. Warren R, Lowe JA, Arnell NW et al (2013) The AVOID programme’s new simulations of the global benefits of stringent climate change mitigation. Clim Chang 120:55–70CrossRefGoogle Scholar
  39. Weitzman M (1994) On the environmental discount rate. J Environ Econ Manag 26:200–209CrossRefGoogle Scholar
  40. Weyant J, Davidson O, Dowlatabadi H et al (1996) Integrated assessment of climate change: an overview and comparison of approaches and results. In: Bruce JP, Lee H, Haites EF (eds) Climate Change 1995: economic and social dimensions. Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Annemiek K. Admiraal
    • 1
  • Andries F. Hof
    • 1
  • Michel G. J. den Elzen
    • 1
  • Detlef P. van Vuuren
    • 1
    • 2
  1. 1.PBL Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  2. 2.Copernicus Institute of Sustainable Development, Department of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations