NUTGRANJA 2.0: a simple mass balance model to explore the effects of different management strategies on nitrogen and greenhouse gases losses and soil phosphorus changes in dairy farms

Abstract

Farm nutrient management has been identified as one of the most important factors determining the economic and environmental performance of dairy cattle (Bos taurus) farming systems. Given the environmental problems associated with dairy farms, such as emissions of greenhouse gases (GHG), and the complex interaction between farm management, environment and genetics, there is a need to develop robust tools which enable scientists and policy makers to study all these interactions. This paper describes the development of a simple model called NUTGRANJA 2.0 to evaluate GHG emissions and nitrogen (N) and phosphorus (P) losses from dairy farms. NUTGRANJA 2.0 is an empirical mass-balance model developed in order to simulate the main transfers and flows of N and P through the different stages of the dairy farm management. A model sensitivity test was carried out to explore some of the sensitivities of the model in relation to the simulation of GHG and N emissions. This test indicated that both management (e.g. milk yield per cow, annual fertiliser N rate) and site-specific factors (e.g. % clover (Trifolium) in the sward, soil type, and % land slope) had a large effect on most of the model state variables studied (e.g. GHG and N losses).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Almeida JPF, Hartwig UA, Frehner M, Nosberger J, Luscher A (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51(348):1289–1297

    Article  Google Scholar 

  2. Artetxe A, Rodríguez M, Guallar MO, Salazar GB (1996) Actas de la XXXVI reunión científica de la Sociedad Española para el Estudio de los Pastos. Consejería de Agricultura, Ganadería y Desarrollo Rural, Pp 221–226

  3. Beever D, Crompton L, France J, Kebreab E, Sutton J (2005) Effect of energy and protein supplementation on phosphorus utilization in lactating dairy cows. J Anim Feed Sci 14(1):63–77

    Google Scholar 

  4. Brown L, Scholefield D, Jewkes E, Lockyer D, Del Prado A (2005) NGAUGE: A decision support system to optimise N fertilisation of British grassland for economic and environmental goals. Agric Ecosyst Environ 109(1):20–39

    Article  Google Scholar 

  5. Chambers B, Lord E, Nicholson F, Smith K (1999) Predicting nitrogen availability and losses following application of organic manures to arable land: MANNER. Soil Use Manag 15(3):137–143

    Article  Google Scholar 

  6. Clarkson D, Hopper M, Jones L (1986) The effect of root temperature on the uptake of nitrogen and the relative size of the root system in Lolium perenne. I. Solutions containing both NH4 + and NO3 . Plant Cell Environ 9(7):535–545

    Google Scholar 

  7. Del Hierro O, Del Prado A, Artetxe A, Pinto M (2002) Water quality impacts associated with an intensive farm in the North of Spain (Basque Country). Watershed Management to Meet Emerging TMDL Conference, Texas

    Google Scholar 

  8. Del Prado A, Corre WJ, Oenema O (1999) Modeling gaseous nitrogen oxide losses from livestock farming systems in Europe. 2, II-10. 10th N Workshop, Copenhagen

    Google Scholar 

  9. Del Prado A, Corre WJ, Oenema O, Pinto M (2000) NUTGRANJA 1.0. Description and parameterization of a farm-scale simulation model. Appendices to the Third Progress Report, i.e. reports and manuscripts of all partners. FAIR 3 CT96-1920

  10. Del Prado A, Brown L, Schulte R, Ryan M, Scholefield D (2006a) Principles of development of a mass balance N cycle model for temperate grasslands: an Irish case study. Nutr Cycl Agroecosyst 74(2):115–131

    Article  Google Scholar 

  11. Del Prado A, Merino P, Estavillo J, Pinto M, Gonzalez-Murua C (2006b) N2O and NO emissions from different N sources and under a range of soil water contents. Nutr Cycl Agroecosyst 74(3):229–243

    Article  Google Scholar 

  12. Del Prado A, Misselbrook T, Chadwick D, Hopkins A, Dewhurst RJ, Davison P, Butler A, Schröder J, Scholefield D (2011) SIMSDAIRY: A modelling framework to identify sustainable dairy farms in the UK. Framework description and test for organic systems and N fertiliser optimisation. Sci Total Environ 409(19):3993–4009

    Article  Google Scholar 

  13. Del Prado A, Crosson P, Olesen JE, Rotz C (2013a) Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems. Animal 7(s2):373–385

    Article  Google Scholar 

  14. Del Prado A, Mas K, Pardo G, Gallejones P (2013b) Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain. Sci Total Environ 465:156–165

    Article  Google Scholar 

  15. Dijkstra J, Oenema O, Bannink A (2011) Dietary strategies to reducing N excretion from cattle: implications for methane emissions. Curr Opin Environ Sustain 3:414–422

    Article  Google Scholar 

  16. Estavillo J, Rodríguez M, Domingo M, Munoz-Rueda A, Gonzalez-Murua C (1994) Denitrification losses from a natural grassland in the Basque Country under organic and inorganic fertilization. Plant Soil 162(1):19–29

    Article  Google Scholar 

  17. Estavillo J, Gonzalez-Murua C, Besga G, Rodríguez M (1996) Effect of cow slurry N on herbage productivity, efficiency of N utilization and on white clover content in a natural sward in the Basque Country, Spain. Grass Forage Sci 51(1):1–7

    Article  Google Scholar 

  18. Estavillo J, Rodríguez M, Lacuesta M, Gonzalez-Murua C (1997) Effects of cattle slurry and mineral N fertilizer applications on various components of the nitrogen balance of mown grassland. Plant Soil 188(1):49–58

    Article  Google Scholar 

  19. Fangueiro D, Pereira J, Coutinho J, Moreira N, Trindade H (2008) NPK farm-gate nutrient balances in dairy farms from Northwest Portugal. Eur J Agron 28(4):625–634

    Article  Google Scholar 

  20. Haygarth PM, Jarvis SC (1999) Transfer of phosphorus from agricultural soil. Adv Agron 66:195–249

    Article  Google Scholar 

  21. Haygarth PM, Chapman PJ, Jarvis SC, Smith RV (1998) Phosphorus budgets for two contrasting grassland farming systems in the UK. Soil Use Manag 14:160–167

    Article  Google Scholar 

  22. Hindrichsen I, Wettstein H-R, Machmuller A, Kreuzer M (2006) Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agric Ecosyst Environ 113(1):150–161

    Article  Google Scholar 

  23. Huhtanen P, Nousiainen JI, Rinne M, Kytölä K, Khalili H (2008) Utilization and partition of dietary nitrogen in dairy cows fed grass silage-based diets. J Dairy Sci 91(9):3589–3599

    Article  Google Scholar 

  24. Ibarra A, Albizu I, Astoreka M, Pinto M, Aizpurua A (2003) Valoración de la fertilización orgánica y mineral en distintas rotaciones forrajeras. Actas de la XLIII Reunión Científica de la SEEP. XLIII Reunión Científica de la Sociedad Española para el Estudio de los Pastos. 26–30, Granada, pp 149–153

    Google Scholar 

  25. Intergovernmental Panel on Climate Change (IPCC) (2006) IPCC Guidelines for National Greenhouse Gas Inventories. IPCC/IGES, Kanagawa

    Google Scholar 

  26. Jarvis S, Hutchings N, Brentrup F, Olesen J, Van der Hoek K (2011) Nitrogen flows in farming systems across Europe. The European nitrogen assessment: sources, effects and policy perspectives, Pp 211–228

  27. Keating T, O’Kiely P (2000) Comparison of old permanent grassland, Lolium perenne and Lolium multiflorum swards grown for silage: 1. Effects on beef production per hectare. Irish J Agric Food Res 29(1):1–24

    Google Scholar 

  28. Leinweber P, Meissner R, Eckhardt KU, Seeger J (1999) Management effects on forms of phosphorus in soil and leaching losses. Eur J Soil Sci 50(3):413–424

    Article  Google Scholar 

  29. Lesschen J, Van den Berg M, Westhoek H, Witzke H, Oenema O (2011) Greenhouse gas emission profiles of European livestock sectors. Anim Feed Sci Technol 166:16–28

    Article  Google Scholar 

  30. Li C, Salas W, Zhang R, Krauter C, Rotz A, Mitloehner F (2012) Manure-DNDC: a biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. Nutr Cycl Agroecosyst 93(2):163–200

    Article  Google Scholar 

  31. Macduff J, Jackson S (1991) Growth and preferences for ammonium or nitrate uptake by barley in relation to root temperature. J Exp Bot 42(4):521–530

    Article  Google Scholar 

  32. Merino M, Estavillo J, Pinto M, Rodriguez M, Dunabeitia M, González-Murua C (2001) Nitrous oxide emissions from grassland in an intensive dairy farm in the Basque Country of Spain. Soil Use Manag 17(2):121–127

    Article  Google Scholar 

  33. Mills JAN, Crompton LA, Reynolds CK (2008) Ruminant nutrition regimes to reduce methane and nitrogen emissions. A meta-analysis of current databases. A project funded by the Milk Development Council (MDC/07/04/A)

  34. Milne JA (2005) Societal expectations of livestock farming in relation to environmental effects in Europe. Livest Prod Sci 96(1):3–9

    Article  Google Scholar 

  35. Modin-Edman A-K, Öborn I, Sverdrup H (2007) FARMFLOW–A dynamic model for phosphorus mass flow, simulating conventional and organic management of a Swedish dairy farm. Agric Syst 94(2):431–444

    Article  Google Scholar 

  36. Ondersteijn C, Giesen G, Huirne R (2003) Identification of farmer characteristics and farm strategies explaining changes in environmental management and environmental and economic performance of dairy farms. Agric Syst 78(1):31–55

    Article  Google Scholar 

  37. Oyanarte M, Besga G, Rodriguez M, Domingo M, Sinclair A (1996) Balanced pasture fertilization in the Basque Country: I Phosphorus and potassium budgets on dairy farms. Nutr Cycl Agroecosyst 47(3):261–269

    Article  Google Scholar 

  38. Peyraud J, Verite R, Delaby L (1995) Nitrogen excretion by dairy cows: effect of the diet and of the level of production. Fourrages 142:131–144

    Google Scholar 

  39. Rodríguez M (1990) Desarrollo y evaluación del sistema integrado de diagnóstico y recomendación (DRIS) para la fertilización de praderas permanentes. Tesis doctorales. No 9. Universidad del País Vasco. Servicio central de publicaciones. Gobierno Vasco, Vitoria, Spain

  40. Rodríguez M, Domingo M (1987) Fertilización nitro-fosfo-potasica en praderas naturales del País Vasco. Pastos 17:203–218

    Google Scholar 

  41. Rutter S, Orr R, Yarrow N, Champion R (2004) Dietary preference of dairy cows grazing ryegrass and white clover. J Dairy Sci 87(5):1317–1324

    Article  Google Scholar 

  42. Sánchez B, Álvaro-Fuentes J, Cunningham R, Iglesias A (2014) Towards mitigation of greenhouse gases by small changes in farming practices: understanding local barriers in Spain. Mitig Adapt Strateg Glob Chang, Pp 1–34

  43. Schils R, Verhagen A, Aarts H, Sebek L (2005) A farm level approach to define successful mitigation strategies for GHG emissions from ruminant livestock systems. Nutr Cycl Agroecosyst 71(2):163–175

    Article  Google Scholar 

  44. Scholefield D, Lockyer D, Whitehead D, Tyson K (1991) A model to predict transformations and losses of nitrogen in UK pastures grazed by beef cattle. Plant Soil 132(2):165–177

    Google Scholar 

  45. Scholefield D, Lockyer DR, Ledgard SF (1996) The simulation of N fixation by white clover within a model describing N flows in grazed grassland. J Agric Sci 126:118–119

    Google Scholar 

  46. Schröder J (2005) Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment. Bioresour Technol 96(2):253–261

    Article  Google Scholar 

  47. Sharpley A (1995) Identifying sites vulnerable to phosphorus loss in agricultural runoff. J Environ Qual 24(5):947–951

    Article  Google Scholar 

  48. Spears R, Kohn R, Young A (2003a) Whole-farm nitrogen balance on western dairy farms. J Dairy Sci 86(12):4178–4186

    Article  Google Scholar 

  49. Spears R, Young A, Kohn R (2003b) Whole-farm phosphorus balance on western dairy farms. J Dairy Sci 86(2):688–695

    Article  Google Scholar 

  50. Thomas C (2004) Feed into milk: a new applied feeding system for dairy cows. Nottingham University Press

  51. Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of Anaerobic Microorganisms 717:179–244

    Google Scholar 

  52. Valk H, Beynen A (2003) Proposal for the assessment of phosphorus requirements of dairy cows. Livest Prod Sci 79(2):267–272

    Article  Google Scholar 

  53. Van De Ven GWJ (1992) GRASMOD, a grassland management model to calculate nitrogen losses from grassland. Verslag 158, CABO-DLO, Wageningen, p 109

    Google Scholar 

  54. Van De Ven GWJ (1996) A mathematical approach to comparing environmental and economic goals in dairy farming on sandy soils in the Netherlands. PhD Thesis, Wageningen Agricultural University, Wageningen, p 239

  55. Van Der Meer H (1994) Grassland and Society. Proceedings of the 15th General Meeting of the European Grassland Federation, Pp 6–9

  56. Watson CJ (1986) Preferential uptake of ammonium nitrogen from soil by ryegrass under simulated spring conditions. J Agric Sci 107(1):171–177

    Article  Google Scholar 

  57. Webb J, Misselbrook T (2004) A mass-flow model of ammonia emissions from UK livestock production. Atmos Environ 38(14):2163–2176

    Article  Google Scholar 

  58. Webb J, Ryan M, Anthony S, Brewer A, Laws J, Aller M, Misselbrook T (2006) Cost-effective means of reducing ammonia emissions from UK agriculture using the NARSES model. Atmos Environ 40(37):7222–7233

    Article  Google Scholar 

  59. Yan MJ, Humphreys J, Holden N (2013) The carbon footprint of pasture-based milk production: can white clover make a difference? J Dairy Sci 96(2):857–865

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Spanish National R + D + i Plan (CGL2009-10176) and Department of Education, Universities and Research of the Basque Country (PC2010-33A). This paper has been produced within the context of the REMEDIA network http://redremedia.wordpress.com/.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. del Prado.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

del Prado, A., Corré, W.J., Gallejones, P. et al. NUTGRANJA 2.0: a simple mass balance model to explore the effects of different management strategies on nitrogen and greenhouse gases losses and soil phosphorus changes in dairy farms. Mitig Adapt Strateg Glob Change 21, 1145–1164 (2016). https://doi.org/10.1007/s11027-014-9598-8

Download citation

Keywords

  • Model
  • GHG
  • N2O
  • CH4
  • Nitrogen
  • Phosphorus
  • Dairy farm
  • Grasslands
  • Leaching
  • Ammonia volatilisation