‘Carbon stocks in a Scots pine afforestation under different thinning intensities management’

  • Ricardo Ruiz-PeinadoEmail author
  • Andres Bravo-Oviedo
  • Gregorio Montero
  • Miren del Río
Original Article


Thinning, as a forest management strategy, may contribute towards mitigating climate change, depending on its net effect on forest carbon (C) stocks. Although thinning provides off-site C storage (in the form of wood products) it is still not clear whether it results in an increase, a reduction or no change in on-site C storage. In this study we analyze the effect of thinning on C stocks in a long-term experiment. Different thinning intensities (moderate, heavy and unthinned) have been applied over the last 30 years in a Scots pine (Pinus sylvestris L.) stand, with a thinning rotation period of 10 years. The main C compartments were analyzed: above and belowground tree biomass, deadwood, forest floor and upper 30-cm of the mineral soil and tree biomass removed in thinning treatments. The results revealed that unthinned stands had the highest C stocks with 315 Mg C ha−1, moderate thinning presented 304 Mg C ha−1 and heavy thinning 296 Mg C ha−1, with significant differences between unthinned and heavily thinned stands. These differences were mainly due to C stock in live biomass, which decreased with thinning intensity. However, soil C stocks, forest floor and mineral soil, were not influenced by thinning, all of the stands displaying very similar values 102–107 Mg C ha−1 for total soil; 15–19 Mg C ha−1 for forest floor; 87–88 Mg C ha−1 for mineral soil). These results highlight the sustainability of thinning treatments in terms of C stocks in this pinewood afforestation, and provide valuable information for forest management aimed at mitigating climate change.


Aboveground biomass Carbon sequestration Forest management Mitigation Pinus sylvestris Soil carbon stock 



We would like to thank to Eduardo López-Senespleda, Gerardo Urchaga and Antonio Urchaga for the field support and the staff of the INIA-CIFOR soil laboratory (Salvador Sastre and Puri Pereira) for their assistance. We also thank to all people who maintained the long term trial of this study. Adam Collins carried out the English revision. This work has been partially funded by the projects AGL2011-29701-C02-00, AT010-007 and AT013-004. We are grateful to the two anonymous reviewers for the suggestions that improved the final version of the manuscript.


  1. Aussenac C (1987) Effets de l’eclaircie sur l’ecophysiologie des peuplements forestiers. Schweiz Z Forstwes 138:685–700Google Scholar
  2. Assmann E (1970) The principles of forest yield study. Pergamon Press, OxfordGoogle Scholar
  3. Bates D, Maechler M, Bolker B (2013) lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-2.
  4. Blanco JA, Imbert JB, Castillo FJ (2006) Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. Forest Ecol Manag 237(1–3):342–352CrossRefGoogle Scholar
  5. Blanco J, Imbert JB, Castillo F (2011) Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry 106(3):397–414CrossRefGoogle Scholar
  6. Bravo F, Río M, Bravo-Oviedo A et al (2008) Forest management strategies and carbon sequestration. In: Bravo F, Jandl R, LeMay V, Gadow K (eds) Managing forest ecosystems: the challenge of climate change, vol 17. Springer, Netherlands, pp 179–194CrossRefGoogle Scholar
  7. Charro E, Gallardo J, Moyano A (2010) Degradability of soils under oak and pine in Central Spain. Eur J For Res 129(1):83–91CrossRefGoogle Scholar
  8. Chatterjee A, Vance GF, Tinker DB (2009) Carbon pools of managed and unmanaged stands of ponderosa and lodgepole pine forests in Wyoming. Can J For Res 39(10):1893–1900CrossRefGoogle Scholar
  9. Chroust L (1979) Thinning experiment in a Scots pine forest stand after 20 years investigation. Comm Inst For Chec 11:61–75Google Scholar
  10. D’Amato AW, Bradford JB, Fraver S et al (2011) Forest management for mitigation and adaptation to climate change: insights from long-term silviculture experiments. Forest Ecol Manag 262(5):803–816CrossRefGoogle Scholar
  11. Díaz-Pinés E, Rubio A, Van Miegroet H et al (2011) Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? Forest Ecol Manag 262(10):1895–1904CrossRefGoogle Scholar
  12. Fang JY, Wang ZM (2001) Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass. Ecol Res 16(3):587–592CrossRefGoogle Scholar
  13. Froehlich HA, Miles DWR, Robbins RW (1985) Soil bulk density recovery on compacted skid trails in central Idaho. Soil Sci Soc Am J 49(4):1015–1017CrossRefGoogle Scholar
  14. Han HS, Page-Dumroese D, Han SK et al (2006) Effects of slash, machine passes, and soil moisture on penetration resistance in a cut-to-length harvesting. Int J For Eng 17(2):11–24Google Scholar
  15. Herrero C, Bravo F (2012) Can we get an operational indicator of forest carbon sequestration?: a case study from two forest regions in Spain. Ecol Indic 17:120–126CrossRefGoogle Scholar
  16. Hoover C, Stout S (2007) The carbon consequences of thinning techniques: stand structure makes a difference. J Forest 105(5):266–270Google Scholar
  17. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363CrossRefGoogle Scholar
  18. Ibáñez JJ, Vayreda J, Gracia C (2002) Metodología complementaria al Inventario Forestal Nacional en Catalunya. In: Bravo F, Río M, Peso C (eds) El inventario forestal nacional. Elemento clave para la gestión forestal sostenible. Fundación General de la Universidad de Valladolid, Palencia, pp 67–77Google Scholar
  19. IUSS (International Union Soil Science Working Group) (2007) World reference base for soil resources 2006. In: FAO (Ed.) World Soil Resources Reports 103. Roma, ItalyGoogle Scholar
  20. Jandl R, Lindner M, Vesterdal L et al (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4):253–268CrossRefGoogle Scholar
  21. Janssens IA, Sampson DA, Cermak J et al (1999) Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Ann For Sci 56(2):81–90CrossRefGoogle Scholar
  22. Jonard M, Misson L, Ponette Q (2006) Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Can J For Res 36(10):2684–2695CrossRefGoogle Scholar
  23. Jurgensen M, Tarpey R, Pickens J et al (2012) Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci Soc Am J 76(4):1418–1425CrossRefGoogle Scholar
  24. Kaul M, Mohren G, Dadhwal V (2010) Carbon storage and sequestration potential of selected tree species in India. Mitig Adapt Strateg Glob Chang 15(5):489–510CrossRefGoogle Scholar
  25. Kramer H, Röös M (1989) Durchforstungsversuch in einem weitstaendig begruendeten Kiefernbestand (Thinning trial in a Scots pine stand established at wide spacing). Forst Holz 44(6):139–144Google Scholar
  26. Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627CrossRefGoogle Scholar
  27. Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22CrossRefGoogle Scholar
  28. MAGRAMA (Ministerio de Agricultura, Alimentación y Medio Ambiente) (2013) Infraestructura de datos espaciales. Available at: Cited 18 Feb 2013
  29. Mäkinen H, Isomäki A (2004) Thinning intensity and growth of Scots pine stands in Finland. Forest Ecol Manag 201(2–3):311–325CrossRefGoogle Scholar
  30. Marland G, Schlamadinger B, Canella L (1997) Forest management for mitigation of CO2 emissions: how much mitigation and who gets the credits? Mitig Adapt Strateg Glob Chang 2(2–3):303–318CrossRefGoogle Scholar
  31. Nabuurs GJ, Masera O, Andrasko K et al (2007) Forestry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assesment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 541–584Google Scholar
  32. Niles J, Schwarze R (2001) The value of careful carbon accounting in wood products. Clim Chang 49(4):371–376CrossRefGoogle Scholar
  33. Padilla FM, Vidal B, Sánchez J, Pugnaire FI (2010) Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: implications for land management. J Environ Manag 91(12):2688–2695Google Scholar
  34. Page-Dumroese DS, Jurgensen M, Terry T (2010) Maintaining soil productivity during forest or biomass-to-energy thinning harvests in the Western United States. West J Appl For 25(1):5–11Google Scholar
  35. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993CrossRefGoogle Scholar
  36. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. Forest Ecol Manag 168(1–3):241–257CrossRefGoogle Scholar
  37. Peltola H, Miina J, Rouvinen I, Kellomaki S (2002) Effect of early thinning on the diameter growth distribution along the stem of Scots pine. Silva Fenn 36(4):813–825CrossRefGoogle Scholar
  38. Pérez-Cruzado C, Mansilla-Salinero P, Rodríguez-Soalleiro R, Merino A (2012) Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant Soil 353(1–2):1–21Google Scholar
  39. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6(3):317–327CrossRefGoogle Scholar
  40. Powers M, Kolka R, Palik B et al (2011) Long-term management impacts on carbon storage in Lake States forests. Forest Ecol Manag 262(3):424–431CrossRefGoogle Scholar
  41. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL
  42. del Río M, Calama R, Cañellas I et al (2008) Thinning intensity and growth response in SW-European Scots pine stands. Ann For Sci 65:308CrossRefGoogle Scholar
  43. Río M, López-Senespleda E, Montero G (2006) Manual de gestión para masas procedentes de repoblación de Pinus pinaster Ait., Pinus sylvestris L. y Pinus nigra Arn. en Castilla y León. Serie Técnica. Junta de Castilla y León, SpainGoogle Scholar
  44. Robinson AP, Wykoff WR (2004) Imputing missing height measures using a mixed-effects modeling strategy. Can J For Res 34(12):2492–2500CrossRefGoogle Scholar
  45. Roig S, Rio M, Cañellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. Stands under different thinning regimes. Forest Ecol Manag 206(1–3):179–190CrossRefGoogle Scholar
  46. Ruiz-Peinado R, Bravo-Oviedo A, López-Senespleda E et al (2013) Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? Eur J For Res 132(2):253–262CrossRefGoogle Scholar
  47. Ruiz-Peinado R, Río M, Montero G (2011) New models for estimating the carbon sink capacity of Spanish softwood species. For Syst 20(1):176–188Google Scholar
  48. Schulp CJE, Nabuurs GJ, Verburg PH, de Waal RW (2008) Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecol Manag 256(3):482–490CrossRefGoogle Scholar
  49. SECF (Sociedad Española de Ciencias Forestales) (2011) Situación de los bosques y del sector forestal en España. Informe 2010. 302 p. Available at: Cited: 22 Jun 2013
  50. Simon G, Alberti G, Delle Vedove G et al (2012) Carbon stocks and net ecosystem production changes with time in two Italian forest chronosequences. Eur J For Res 131(5):1297–1311CrossRefGoogle Scholar
  51. Skovsgaard JP, Stupak I, Vesterdal L (2006) Distribution of biomass and carbon in even-aged stands of Norway spruce (Picea abies (L.) Karst.): a case study on spacing and thinning effects in northern Denmark. Scand J For Res 21(6):470–488CrossRefGoogle Scholar
  52. Valbuena-Carabaña M, López de Heredia U, Fuentes-Utrilla P et al (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palynology 162(3):492–506CrossRefGoogle Scholar
  53. Valsta L, Lippke B, Perez-Garcia J et al. (2008) Use of forests and wood products to mitigate climate change. In: Bravo F, Jandl R, LeMay V, Gadow K (eds) Managing forest ecosystems: the challenge of climate change vol 17. Springer Netherlands 137–149Google Scholar
  54. van Delft B, de Waal R, Kemmers R et al (2006) Field guide humus forms: description and classification of humus forms for ecological applications. Alterra, WageningenGoogle Scholar
  55. Vesterdal L, Dalsgaard M, Felby C et al (1995) Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. Forest Ecol Manag 77(1–3):1–10CrossRefGoogle Scholar
  56. Waddell KL (2002) Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol Indic 1(3):139–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ricardo Ruiz-Peinado
    • 1
    • 2
    Email author
  • Andres Bravo-Oviedo
    • 1
    • 2
  • Gregorio Montero
    • 1
    • 2
  • Miren del Río
    • 1
    • 2
  1. 1.Department of Silviculture and Forest ManagementINIA-CIFORMadridSpain
  2. 2.Sustainable Forest Management Research InstituteUniversity of Valladolid- INIAValladolidSpain

Personalised recommendations