Development of a new model for the simulation of N2O emissions: a case-study on wheat cropping systems under humid Mediterranean climate

Abstract

Improving the quantification of nitrous oxide (N2O) emissions from agricultural land has become an issue of major concern due to its strong contribution to the greenhouse effect and to the fact that N2O is now the most significant ozone-depleting emission to the atmosphere. The aim of this paper is to describe the development of a new field-scale, simple and empirical model that simulates monthly nitrogen (N) flows in cropping systems based on site characteristics and management practices. We explored its sensitivity for a Basque region of Spain growing winter wheat (Triticum aestivum L.) under humid Mediterranean conditions to varied weather conditions and different scenarios of: (i) fertiliser rates, (ii) soil texture, (iii) organic/mineral fertilisation, (iv) slurry injection/no injection and (v) tillage/no tillage. The model showed sensitivity to most of the changes in the tested parameters. On average, simulated N2O emissions decreased: (i) with the decrease in N fertiliser rates, (ii) in lighter textured soils, (iii) with organic fertilisation, (iv) after non-injecting slurry and (v) under no-tillage. The model showed that it could be useful to simulate some of the potential trade-offs that may occur after implementation of specific N pollution mitigation measures (e.g. trade-offs in crop productivity and ammonia (NH3) volatilisation after implementation of measures that target a reduction in N2O emissions). In a validation exercise, simulated and measured yield and soil moisture showed reasonable agreement. Although the model showed discrepancies for monthly-averaged N2O fluxes, the peak after fertilisation application was reasonably well simulated. These results and the simplicity and user-friendliness of the model suggest that its structure is appropriate and, if properly calibrated for different soil types and weather conditions, it could be a useful model to be used in carbon footprint studies or to develop site-specific emission factors for current or future climatic scenarios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aguilera E, Lassaletta L, Sanz-Cobena A, Garnier J, Vallejo A (2013) The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric Ecosyst Environ 164:32–52

    Article  Google Scholar 

  2. Alcoz MM, Hons FM, Haby VA (1993) Nitrogen fertilization timing effect on wheat production, nitrogen uptake efficiency, and residual soil nitrogen. Agron J 85(6):1198–1203

    Article  Google Scholar 

  3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Water Resources, Development and Management Service, Rome, 300 pp

  4. Alley MM, Scharf P, Brann DE, Baethgen WE, Hammons JL (2009) Nitrogen management for winter wheat: Principles and recommendations. V Coop Ext Pub 424–026

  5. Arregui LM, Quemada M (2006) Drainage and nitrate leaching in a crop rotation under different N-fertilizer strategies: Application of capacitance probes. Plant Soil 288(1–2):57–69

    Article  Google Scholar 

  6. Arregui LM, Quemada M (2008) Strategies to improve nitrogen use efficiency in winter cereal crops under rainfed conditions. Agron J 100(2):277–284

    Article  Google Scholar 

  7. Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41(6):379–388

    Article  Google Scholar 

  8. Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob Biogeochem Cycles 16(4):1058

    Google Scholar 

  9. Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet J-M, Meynard JM, Delécolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I Theory and parameterization applied to wheat and corn. Agron 18(5–6):311–346

    Article  Google Scholar 

  10. Brown L, Scholefield D, Jewkes EC, Lockyer DR, del Prado A (2005) NGAUGE: a decision support system to optimise N fertilisation of British grassland for economic and environmental goals. Agric Ecosyst Environ 109(1–2):20–39

    Article  Google Scholar 

  11. Bruinsma J (2009) The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050? FAO—Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  12. Burton DL, Zebarth BJ, Gillam KM, MacLeod JA (2008) Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can J Soil Sci 88(2):229–239

    Article  Google Scholar 

  13. Cardenas LM, Cuttle SP, Crabtree B, Hopkins A, Shepherd A, Scholefield D, del Prado A (2011) Cost effectiveness of nitrate leaching mitigation measures for grassland livestock systems at locations in England and Wales. Sci Total Environ 409(6):1104–1115

    Article  Google Scholar 

  14. Castellón A, Villar N, Besga G, Aizpurua A (2013) ¿Cómo afecta la fertilización orgánica a la producción y calidad de grano de trigo blando de invierno? Lurzabal 25:10–13

    Google Scholar 

  15. Chadwick DR, John F, Pain BF, Chambers BJ, Williams J (2000) Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment. J Agric Sci 134(2):159–168

    Article  Google Scholar 

  16. Chambers BJ, Lord EI, Nicholson FA, Smith KA (1999) Predicting nitrogen availability and losses following application of organic manures to arable land: Manner. Soil Use Manag 15(3):137–143

    Article  Google Scholar 

  17. Cookson WR, Beare MH, Wilson PE (1998) Effects of prior crop residue management on microbial properties and crop residue decomposition. Appl Soil Ecol 7(2):179–188

    Article  Google Scholar 

  18. Davidson EA, Matson PA, Vitousek PM, Riley R, Dunkin K, Garcia-Mendez G, Maass JM (1993) Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74(1):130–139

    Article  Google Scholar 

  19. Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50(8):667–680

    Article  Google Scholar 

  20. del Prado A, Brown L, Schulte R, Ryan M, Scholefield D (2006a) Principles of development of a mass balance n cycle model for temperate grasslands: An irish case study. Nutr Cycl Agroecosyst 74(2):115–131

    Article  Google Scholar 

  21. del Prado A, Merino P, Estavillo JM, Pinto M, González-Murua C (2006b) N2O and NO emissions from different N sources and under a range of soil water contents. Nutr Cycl Agroecosyst 74(3):229–243

    Article  Google Scholar 

  22. del Prado A, Chadwick D, Cardenas L, Misselbrook T, Scholefield D, Merino P (2010) Exploring systems responses to mitigation of GHG in UK dairy farms. Agric Ecosyst Environ 136(3–4):318–332

    Article  Google Scholar 

  23. Delogu G, Cattivelli L, Pecchioni N, De Falcis D, Maggiore T, Stanca AM (1998) Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. Eur J Agron 9(1):11–20

    Article  Google Scholar 

  24. Dosch P, Gutser R (1995) Reducing N losses (NH3, N2O, N2) and immobilization from slurry through optimized application techniques. Fertil Res 43(1–3):165–171

    Google Scholar 

  25. Errebhi M, Rosen CJ, Gupta SC, Birong DE (1998) Potato yield response and nitrate leaching as influenced by nitrogen management. Agron J 90(1):10–15

    Article  Google Scholar 

  26. Feibert EBG, Shock CC, Saunders LD (1998) Nitrogen fertilizer requirements of potatoes using carefully scheduled sprinkler irrigation. HortSci 33(2):262–265

    Google Scholar 

  27. Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, AvdP-v D, Soussana JF, Jones M, Clifton-Brown J, Raschi A, Horvath L, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J, Calanca P, Thalman E, Pilegaard K, Di Marco C, Campbell C, Nemitz E, Hargreaves KJ, Levy PE, Ball BC, Jones SK, van de Bulk WCM, Groot T, Blom M, Domingues R, Kasper G, Allard V, Ceschia E, Cellier P, Laville P, Henault C, Bizouard F, Abdalla M, Williams M, Baronti S, Berretti F, Grosz B (2007) Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agric Ecosyst Environ 121(1–2):135–152

    Article  Google Scholar 

  28. Flowers MD, Lutcher LK, Corp MK, Brown B (2007) Managing nitrogen for yield and protein in hard wheat. Oregon State University, FS, 335

    Google Scholar 

  29. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge University Press, Cambridge

    Google Scholar 

  30. Gallejones P, Castellon A, del Prado A, Unamunzaga O, Aizpurua A (2012) Nitrogen and sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat-rapeseed rotation under a humid Mediterranean climate. Nutr Cycl Agroecosyst 93(3):337–355

    Article  Google Scholar 

  31. Garabet S, Ryan J, Wood M (1998a) Nitrogen and water effects on wheat yield in a Mediterranean-type climate. II Fertilizer-use efficiency with labelled nitrogen. Field Crop Res 58(3):213–221

    Article  Google Scholar 

  32. Garabet S, Wood M, Ryan J (1998b) Nitrogen and water effects on wheat yield in a Mediterranean-type climate: I. Growth, water-use and nitrogen accumulation. Field Crop Res 57(3):309–318

    Article  Google Scholar 

  33. Garnier P, Néel C, Aita C, Recous S, Lafolie F, Mary B (2003) Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation. Eur J Soil Sci 54(3):555–568

    Article  Google Scholar 

  34. Gilmour JT (1984) The effects of soil properties on nitrification and nitrification inhibition. Soil Sci Soc Am J 48(6):1262–1266

    Article  Google Scholar 

  35. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: The challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  Google Scholar 

  36. Grable AR (1966) Soil aeration and plant growth. Advances in agronomy. Acad Press 18:57–106

    Google Scholar 

  37. GV-EJ (1999) Decreto 390/1998 por el que se dictan normas para la declaración de Zonas Vulnerables a la contaminación de las aguas por los nitratos procedentes de la actividad agraria y se aprueba el Código de Buenas Prácticas Agrarias de la Comunidad Autónoma del País Vasco. BOPV 18:1448–1474

    Google Scholar 

  38. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from ambient air temperature. Paper No. 85–2517. American Society of Agricultural Engineers, Chicago

    Google Scholar 

  39. Heitholt JJ, Croy LI, Maness NO, Nguyen HT (1990) Nitrogen partitioning in genotypes of winter wheat differing in grain N concentration. Field Crop Res 23(2):133–144

    Article  Google Scholar 

  40. IPCC (2006) IPCC guidelines for national greenhouse gas inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Prepared by the national greenhouse gas inventories programme. Published: IGES, Japan

    Google Scholar 

  41. IPCC (2007) Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  42. Jarvis SC, Stockdale EA, Shepherd MA, Powlson DS (1996) Nitrogen mineralization in temperate agricultural soils: Processes and measurement advances in agronomy. Acad Press 57:187–235

    Google Scholar 

  43. Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC (2007) Agricultural opportunities to mitigate greenhouse gas emissions. Environ Pollut 150(1):107–124

    Article  Google Scholar 

  44. Kerr G, Pochop L, Fornstrom KJ, Krall JM, Brown D (1993) Soil water and ET estimates for a wide range of rainfed and irrigated conditions. Agric Water Manag 24(2):147–159

    Article  Google Scholar 

  45. Kumar K, Goh KM, Donald LS (1999) Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery advances in agronomy. Acad Press 68:197–319

    Google Scholar 

  46. Landeras G, Ortiz-Barredo A, López J (2009) Forecasting weekly evapotranspiration with arima and artificial neural network models. J Irrig Drain Eng 135(3):323–334

    Article  Google Scholar 

  47. Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1 model structure and sensitivity. J Geophys Res 97(D9):9759–9776

    Article  Google Scholar 

  48. Macduff JH, White RE (1985) Net mineralization and nitrification rates in a clay soil measured and predicted in permanent grassland from soil-temperature and moisture-content. Plant Soil 86(2):151–172

    Article  Google Scholar 

  49. MAGRAMA (2011a) Superficies y producciones anuales de cultivos—Estadísticas agrarias. Ministerio de Agricultura, Alimentación y Medio Ambiente. Gobierno de España

  50. MAGRAMA (2011b) Caracterización de las comarcas agrarias de España. Tomo 3. Provincia de Alava. Ministerio de Agricultura, Alimentación y Medio Ambiente. Gobierno de España

  51. Malhi SS, Lemke R (2007) Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-years rotation cycle. Soil Tillage Res 96(1–2):269–283

    Article  Google Scholar 

  52. Mary B, Recous S, Machet JM (1988) A comprehensive approach to the fertilizer part of plant nitrogen uptake. In: Jenkinson DS and Smith KA (eds) Nitrogen efficiency in agricultural soils. Elsevier Applied Science, pp 85–94

  53. Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181(1):71–82

    Article  Google Scholar 

  54. McMaster GS (1997) Phenology, development, and growth of the wheat (Triticum aestivum L.) shoot apex: a review. Adv Agron 59:63–118

    Article  Google Scholar 

  55. McMaster GS, Smika DE (1988) Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric For Meteorol 43(1):1–18

    Article  Google Scholar 

  56. Misselbrook TH, Smith KA, Johnson RA, Pain BF (2002) Se-structures and environment: Slurry application techniques to reduce ammonia emissions: Results of some uk field-scale experiments. Biosyst Eng 81(3):313–321

    Article  Google Scholar 

  57. Misselbrook TH, Sutton MA, Scholefield D (2004) A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications. Soil Use Manag 20(4):365–372

    Article  Google Scholar 

  58. Monteith JL (1984) Consistency and convenience in the choice of units for agricultural science. Exp Agric 20(02):105–117

    Article  Google Scholar 

  59. Mosier AR, Parton WJ, Hutchinson GL (1983) Modelling nitrous oxide evolution from cropped and native soils. Environmental biogeochemistry. Ecol Bull 35:229–241

    Google Scholar 

  60. Ortuzar MA (2007) Desarrollo de un sistema de fertilización nitrogenada racional de trigo blando de invierno bajo condiciones de clima mediterráneo húmedo. Doctoral thesis. University of the Basque Country

  61. Ortuzar-Iragorri MA, Castellón A, Alonso A, Besga G, Estavillo JM, Aizpurua A (2010) Estimation of optimum nitrogen fertilizer rates in winter wheat in humid Mediterranean conditions, I: Selection of yield and protein response models. Commun Soil Sci Plant Anal 41(19):2293–2300

    Article  Google Scholar 

  62. Oscarson P, Lundborg T, Larsson M, Larsson C-M (1995) Genotypic differences in nitrate uptake and nitrogen utilization for spring wheat grown hydroponically. Crop Sci 35(4):1056–1062

    Article  Google Scholar 

  63. Parton WJ, Hartman M, Ojima D, Schimel D (1998) DAYCENT and its land surface submodel: Description and testing. Glob Planet Chang 19(1–4):35–48

    Article  Google Scholar 

  64. Petersen SO, Sommer SG (2011) Ammonia and nitrous oxide interactions: Roles of manure organic matter management. Anim Feed Sci Technol 166–167:503–513

    Article  Google Scholar 

  65. Pinto M, Merino P, del Prado A, Estavillo JM, Yamulki S, Gebauer G, Piertzak S, Lauf J, Oenema O (2004) Increased emissions of nitric oxide and nitrous oxide following tillage of a perennial pasture. Nutr Cycl Agroecosyst 70(1):13–22

    Article  Google Scholar 

  66. Quemada M (2006) Balance de nitrógeno en sistemas de cultivo de cereal de invierno y de maíz en varias regiones españolas. Monogr INIA serie agrícola nº 21

  67. Rice CW, Grove JH, Smith MS (1987) Estimating soil net nitrogen mineralization as affected by tillage and soil drainage due to topographic position. Can J Soil Sci 67(3):513–520

    Article  Google Scholar 

  68. Rodda HJE, Scholefield D, Webb BW, Walling DE (1995) Management model for predicting nitrate leaching from grassland catchments in the United Kingdom: 1 Model development. Hydrol Sci J 40(4):433–451

    Article  Google Scholar 

  69. Roelandt C, Van Wesemael B, Rounsevell M (2005) Estimating annual N2O emissions from agricultural soils in temperate climates. Glob Chang Biol 11(10):1701–1711

    Article  Google Scholar 

  70. Royal Society of London (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture. RS Policy document 11/09, London

    Google Scholar 

  71. Rroço E, Mengel K (2000) Nitrogen losses from entire plants of spring wheat (Triticum aestivum) from tillering to maturation. Eur J Agron 13(2–3):101–110

    Article  Google Scholar 

  72. Scholefield D, Lockyer D, Whitehead D, Tyson K (1991) A model to predict transformations and losses of nitrogen in UK pastures grazed by beef cattle. Plant Soil 132(2):165–177

    Google Scholar 

  73. Schröder JJ, Aarts HFM, van Middelkoop JC, Schils RLM, Velthof GL, Fraters B, Willems WJ (2007) Permissible manure and fertilizer use in dairy farming systems on sandy soils in The Netherlands to comply with the Nitrates Directive target. Eur J Agron 27(1):102–114

    Article  Google Scholar 

  74. Smith JU, Bradbury NJ, Addiscott TM (1996) Sundial: a pc-based system for simulating nitrogen dynamics in arable land. Agron J 88(1):38–43

    Article  Google Scholar 

  75. Soil Survey Staff (2006) Keys to soil taxonomy, 11th edn. United States Department of Agriculture, Washington

    Google Scholar 

  76. St. Luce M, Whalen JK, Ziadi N, Zebarth BJ, Donald LS (2011) Chapter two—nitrogen dynamics and indices to predict soil nitrogen supply in humid temperate soils advances in agronomy. Acad Press 112:55–102

    Google Scholar 

  77. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74(3):207–228

    Article  Google Scholar 

  78. Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18(3–4):289–307

    Article  Google Scholar 

  79. Thorman RE, Chadwick DR, Harrison R, Boyles LO, Matthews R (2007) The effect on N2O emissions of storage conditions and rapid incorporation of pig and cattle farmyard manure into tillage land. Biosyst Eng 97(4):501–511

    Article  Google Scholar 

  80. UNEP (2013) Drawing down N2O to protect Climate and the Ozone layer. A UNEP synthesis report. United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  81. van de Ven GWJ (1992) Grasmod: A Grassland Management Model to Calculate Nitrogen Losses from Grassland. Centre for Agrobiological Research, 109pp

  82. Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61(6):903–913

    Article  Google Scholar 

  83. Vigil MF, Kissel DE (1991) Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Sci Soc Am J 55(3):757–761

    Article  Google Scholar 

  84. Wardlaw I, Wrigley C (1994) Heat tolerance in temperate cereals: An overview. Funct Plant Biol 21(6):695–703

    Google Scholar 

  85. Zebarth BJ, Rochette P, Burton DL (2008) N2O emissions from spring barley production as influenced by fertilizer nitrogen rate. Can J Soil Sci 88(2):197–205

    Article  Google Scholar 

  86. Zhou M, Butterbach-Bahl K (2013) Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant and Soil: 1–15

Download references

Acknowledgments

The authors would like to thank the Spanish National R + D + i Plan (CGL2009–10,176, AGL2012–37,815–C05–04) and Department of Education, Universities and Research of the Basque Country (PC2010–33A).

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Gallejones.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gallejones, P., Aizpurua, A., Ortuzar-Iragorri, M. et al. Development of a new model for the simulation of N2O emissions: a case-study on wheat cropping systems under humid Mediterranean climate. Mitig Adapt Strateg Glob Change 21, 1107–1130 (2016). https://doi.org/10.1007/s11027-014-9563-6

Download citation

Keywords

  • Climate change mitigation
  • Empirical
  • Modelling
  • N2O emissions
  • Nitrogen
  • Wheat