Contribution of agroforests to landscape carbon storage

  • Götz Schroth
  • Lucio C. Bede
  • Artur O. Paiva
  • Camila R. Cassano
  • André M. Amorim
  • Deborah Faria
  • Eduardo Mariano-Neto
  • Adriana M. Z. Martini
  • Regina H. R. Sambuichi
  • Renato N. Lôbo
Original Article

Abstract

While many studies have measured the carbon (C) stocks of traditional agroforests at the plot level, their contribution to overall landscape C storage has rarely been quantified. Here we demonstrate the significant contribution that traditional agroforests with shaded tree crops can make to landscape C storage, and thus climate change mitigation, focusing on the cocoa (Theobroma cacao) agroforests (locally known as cabrucas) of southern Bahia, Brazil. Using published allometric relationships and tree inventories of 55 shaded cocoa farms, 6 mature forests, 8 disturbed forests and 7 fallows, we calculate average aboveground C stocks of 87 and 46 Mg ha−1 in traditional and intensified cocoa agroforests, respectively, 183 Mg ha−1 in old-growth forests, 102 Mg ha−1 in disturbed forests and 33 Mg ha−1 in fallows. Based on the most recent land cover data available, we estimate that cocoa agroforests hold 59 % of the total aboveground C stocks of the tree dominated vegetation in this landscape, while forests hold 32 % and fallows hold 9 %. Carbon stocks of intensified cocoa agroforestry systems were only little over one-half of those of traditional agroforests, indicating a threat to landscape C stocks from current land use trends. We show that in agroforests as in natural forests, C stocks are highly concentrated in the largest trees. This suggests that the intensification of traditional agroforests, which generally involves increasing the density of cocoa and other tree crops and reducing the density of shade trees, is possible without greatly affecting their C storage if large trees are conserved. In order to conserve the climate stabilizing effect of traditional agroforests and steer necessary intensification measures towards climate-friendly solutions, we suggest that biodiversity and C-rich traditional agroforests should be included in current discussions about Reducing Emissions from Deforestation and Forest Degradation (REDD+) and/or their owners be rewarded for their environmental services through other incentive mechanisms.

Keywords

Atlantic forest biome Brazil Climate change mitigation Cocoa Land use intensification Theobroma cacao 

References

  1. Alger K, Caldas M (1994) The declining cocoa economy and the Atlantic forest of southern Bahia, Brazil: conservation attitudes of cocoa planters. Environmentalist 14:107–119. doi:10.1007/BF01901304 CrossRefGoogle Scholar
  2. Andrade HJ, Segura M, Somarriba E, Villalobos M (2008) Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Agroforestería en las Américas 46:45–50Google Scholar
  3. Boshier DH (2004) Agroforestry systems: important components in conserving the genetic viability of native tropical tree species? In: Schroth G, Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 290–313Google Scholar
  4. Cassano CR, Barlow J, Pardini R (2012) Large mammals in an agroforestry mosaic in the Brazilian Atlantic Forest. Biotropica 44:818–825. doi:10.1111/j.1744-7429.2012.00870.x CrossRefGoogle Scholar
  5. Cassano CR, Barlow J, Pardini R (2013) Forest loss or management intensification? Identifying causes of mammal decline in cacao agroforests. Biol Cons. doi:10.1016/j.biocon.2013.10.006 Google Scholar
  6. Cassano CR, Schroth G, Faria D, Delabie JHC, Bede L (2009) Landscape and farm scale management to enhance biodiversity conservation in the cocoa producing region of southern Bahia, Brazil. Biodivers Conserv 18:577–603. doi:10.1007/s10531-008-9526-x CrossRefGoogle Scholar
  7. Evans K, Murphy L, de Jong W (2013) Global versus local narratives of REDD: a case study from Peru’s Amazon. Environ Sci Policy. doi:10.1016/j.envsci.2012.12.013 Google Scholar
  8. Faria D, Mariano-Neto E, Martini AMZ, Ortiz JV, Montingelli R, Rosso S, Paciencia MLB, Baumgarten J (2009) Forest structure in a mosaic of rainforest sites: the effect of fragmentation and recovery after clear cut. For Ecol Manag 257:2226–2234. doi:10.1016/j.foreco.2009.02.032 CrossRefGoogle Scholar
  9. Faria D, Paciencia MLB, Dixo MBO, Laps RR, Baumgarten J (2007) Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting landscapes in the Atlantic forest, Brazil. Biodiv Conserv 16:2335–2357. doi:10.1007/s10531-007-9189-z CrossRefGoogle Scholar
  10. Gama-Rodrigues EF, Gama-Rodrigues AC, Nair PKR (2011) Soil carbon sequestration in cacao agroforestry systems: a case study from Bahia, Brazil. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Springer, Dordrecht, pp 85–99. doi:10.1007/978-94-007-1630-8_5 CrossRefGoogle Scholar
  11. Jacobi J, Andres C, Schneider M, Pillco M, Calizaya P, Rist S (2013) Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor Syst. doi:10.1007/s10457-013-9643-8 Google Scholar
  12. Johns ND (1999) Conservation in Brazil’s chocolate forest: the unlikely persistence of the traditional cocoa agroecosystem. Environ Manag 23:31–47. doi:10.1007/s002679900166 CrossRefGoogle Scholar
  13. Kumar BM, Nair PKR (2004) The enigma of tropical homegardens. Agrofor Syst 61:135–152. doi:10.1023/B:AGFO.0000028995.13227.ca Google Scholar
  14. Kumar BM, Nair PKR (2011) Carbon sequestration potential of agroforestry systems - opportunities and challenges. Springer, DordrechtCrossRefGoogle Scholar
  15. Landau EC (2003) Padrões de ocupação espacial da paisagem na Mata Atlântica do Sudeste da Bahia, Brasil. In: Prado PI, Landau EC, Moura RT, Pinto LP, Fonseca GAB, Alger K (eds) Corredor de Biodiversidade da Mata Atlântica do Sul da Bahia (CDROM). IESB/CI/CABS/UFMG/UNICAMP, Ilhéus, pp 1–15Google Scholar
  16. Landau EC, Hirsch A, Musinsky J (2008) Vegetation cover and land use in the Atlantic forest of southern Bahia, Brazil, based on satellite imagery: a comparison among municipalities. In: Thomas WW, Britton EG (eds) The Atlantic coastal forest of Northeastern Brazil. N Y Bot Gard Press, New York, pp 221–244Google Scholar
  17. Martini AMZ, Fiaschi P, Amorim AM, Paixão JL (2007) A hot-point within a hot-spot: a high diversity site in Brazil’s Atlantic forest. Biodiv Conserv 16:3111–3128. doi:10.1007/s10531-007-9166-6 CrossRefGoogle Scholar
  18. Mbow C, Smith P, Skole DL, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14. doi:10.1016/j.cosust.2013.09.002 CrossRefGoogle Scholar
  19. Michon G (2005) Domesticating forests - how farmers manage forest resources. Center for International Forestry Research, BogorGoogle Scholar
  20. Michon G, de Foresta H (1999) Agro-forests: incorporating a forest vision in agroforestry. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agricultural systems. Lewis Publishers, Boca Raton, pp 381–406Google Scholar
  21. Midlej RR, Santos AM (2012) Economia do cacau. In: Valle RR (ed) Ciência, Tecnologia e Manejo do Cacaueiro. CEPLAC, CEPEC, SEFIS, Itabuna, pp 655–672Google Scholar
  22. Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295. doi:10.1023/B:AGFO.0000029005.92691.79 Google Scholar
  23. Mori SA, Boom BM, Carvalho AM, Santos TS (1983) Southern Bahian moist forest. N Y Bot Gard 49:155–232Google Scholar
  24. Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307. doi:10.1016/S0065-2113(10)08005-3 CrossRefGoogle Scholar
  25. Oliveira LC, Neves LG, Raboy BE, Dietz JM (2011) Abundance of jackfruit (Artocarpus heterophyllus) affects group characteristics and use of space by golden-headed lion tamarins (Leontopithecus chrysomelas) in cabruca agroforest. Environ Manag 48:248–262. doi:10.1007/s00267-010-9582-3 CrossRefGoogle Scholar
  26. Pardini R, Faria D, Accacio GM, Laps RR, Mariano-Neto E, Paciencia MLB, Dixo MBO, Baumgarten J (2009) The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol Cons 142:1178–1190. doi:10.1016/j.biocon.2009.02.010 CrossRefGoogle Scholar
  27. Pearson T, Walker S, Brown S (2005) Source book for LULUCF projects. Winrock International, ArlingtonGoogle Scholar
  28. Rolim SG, Chiarello AG (2004) Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil. Biodiv Conserv 13:2679–2694. doi:10.1007/s10531-004-2142-5 CrossRefGoogle Scholar
  29. Ruf F, Schroth G (2004) Chocolate forests and monocultures - an historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In: Schroth G, Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 107–134Google Scholar
  30. Sambuichi RHR, Haridasan M (2007) Recovery of species richness and conservation of native Atlantic forest trees in the cacao plantations of southern Bahia in Brazil. Biodiv Conserv 16:3681–3701. doi:10.1007/s10531-006-9017-x CrossRefGoogle Scholar
  31. Sambuichi RHR, Vidal DB, Piasentin FB, Jardim JG, Viana TG, Menezes AA, Mello DLN, Ahnert D, Baligar VC (2012) Cabruca agroforests in southern Bahia, Brazil: tree component, management practices and tree species conservation. Biodiv Conserv 21:1055–1077. doi:10.1007/s10531-012-0240-3 CrossRefGoogle Scholar
  32. Santana SO, Faria Filho AF, Lisboa GP (2010) Mapa de Solos 1:750 000. CEPLAC/CEPEC/SENUP, IlhéusGoogle Scholar
  33. Schroth G, Coutinho P, Moraes VHF, Albernaz AKM (2003) Rubber agroforests at the Tapajós river, Brazilian Amazon - environmentally benign land use systems in an old forest frontier region. Agric Ecosys Environ 97:151–165. doi:10.1016/S0167-8809(03)00116-6 CrossRefGoogle Scholar
  34. Schroth G, D’Angelo SA, Teixeira WG, Haag D, Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after seven years. For Ecol Manag 163:131–150. doi:10.1016/S0378-1127(01)00537-0 CrossRefGoogle Scholar
  35. Schroth G, Faria D, Araujo M, Bede L, Van Bael SA, Cassano CR, Oliveira LC, Delabie JHC (2011) Conservation in tropical landscape mosaics: the case of the cacao landscape of southern Bahia, Brazil. Biodiv Conserv 20:1635–1654. doi:10.1007/s10531-011-0052-x CrossRefGoogle Scholar
  36. Schroth G, Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, WashingtonGoogle Scholar
  37. Somarriba E, Cerda R, Orozco L, Cifuentes M, Dávila H, Espin T, Mavisoy H, Ávila G, Alvarado E, Poveda V, Astorga C, Say E, Deheuvels O (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosys Environ 173:46–57. doi:10.1016/j.agee.2013.04.013 CrossRefGoogle Scholar
  38. Somarriba E, Harvey CA, Samper M, Anthony F, González J, Staver C, Rice RA (2004) Biodiversity conservation in neotropical coffee (Coffea arabica) plantations. In: Schroth G, Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 198–226Google Scholar
  39. Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA (2010) Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol Cons 143:2328–2340. doi:10.1016/j.biocon.2010.02.005 CrossRefGoogle Scholar
  40. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92. doi:10.1046/j.0305-0270.2003.00994.x CrossRefGoogle Scholar
  41. Thomas WW, Barbosa MRV (2008) Natural vegetation types in the Atlantic Coastal Forest of Northeastern Brazil. In: Thomas WW, Britton EG (eds) The Atlantic coastal forest of Northeastern Brazil. N Y Bot Gard Press, New York, pp 6–20Google Scholar
  42. Thomas WW, Carvalho AMV, Amorim AM, Hanks JG, Santos TS (2008) Diversity of woody plants in the Atlantic coastal forest of southern Bahia, Brazil. In: Thomas WW, Britton EG (eds) The Atlantic coastal forest of Northeastern Brazil. N Y Bot Gard Press, New York, pp 21–66Google Scholar
  43. Thomas WW, Jardim JG, Fiaschi P, Mariano-Neto E, Amorim AM (2009) Composição florística e estrutura do componente arbóreo de uma área transicional de Floresta Atlântica no sul da Bahia, Brasil. Rev Bras Bot 32:65–78CrossRefGoogle Scholar
  44. Tiepolo G, Calmon M, Feretti AR (2002) Measuring and monitoring carbon stocks at the Guaraqueçaba Climate Action Project, Paraná, Brazil. International Symposium on Forest Carbon Sequestration and Monitoring. Taiwan For Inst Ext Ser 153:98–115Google Scholar
  45. Valle RR (2012) Ciência, Tecnologia e Manejo do Cacaueiro. Vital, ItabunaGoogle Scholar
  46. Wade ASI, Asase A, Hadley P, Mason J, Orori-Frimpong K, Preece D, Spring N, Norris K (2010) Management strategies for maximizing carbon storage and tree species diversity in cocoa-growing landscapes. Agric Ecosys Environ 138:324–334. doi:10.1016/j.agee.2010.06.007 CrossRefGoogle Scholar
  47. Zepeda Y, Schroth G, Hernandez R (2010) Complementary environmental service reward programmes for sustainable mosaic landscapes in the Sierra Madre de Chiapas, Mexico. Mt Forum Bull 2010:80–82Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Götz Schroth
    • 1
    • 11
  • Lucio C. Bede
    • 2
  • Artur O. Paiva
    • 3
  • Camila R. Cassano
    • 4
    • 5
  • André M. Amorim
    • 4
    • 6
  • Deborah Faria
    • 4
  • Eduardo Mariano-Neto
    • 7
  • Adriana M. Z. Martini
    • 8
  • Regina H. R. Sambuichi
    • 9
  • Renato N. Lôbo
    • 10
  1. 1.SantarémBrazil
  2. 2.Instituto Terra BrasilisBelo HorizonteBrazil
  3. 3.WWF-BrazilBrasíliaBrazil
  4. 4.Department of Biological SciencesState University of Santa CruzIlhéusBrazil
  5. 5.Institute of Socio-Environmental Studies of Southern BahiaIlhéusBrazil
  6. 6.Herbarium CEPEC, CEPLACItabunaBrazil
  7. 7.Institute of BiologyFederal University of BahiaSalvadorBrazil
  8. 8.Institute of Biosciences, Department of EcologyUniversity of São PauloSão PauloBrazil
  9. 9.Institute of Applied Economic ResearchBrasíliaBrazil
  10. 10.Difusão Consulting Ltd.BrasíliaBrazil
  11. 11.Rainforest AllianceWageningenNetherlands

Personalised recommendations