Mediterranean shrublands carbon sequestration: environmental and economic benefits

  • Loretta Gratani
  • Laura Varone
  • Carlo Ricotta
  • Rosangela Catoni
Original Article

Abstract

To date, only a few attempts have been done to estimate the contribution of Mediterranean ecosystems to the global carbon cycle. Within this context, shrub species, composition and structure of the Mediterranean shrublands developing along the Latium coast (Italy) were analyzed in order to evaluate their contribution to carbon (C) sequestration, also taking into consideration the economic benefits at a national level. The considered shrublands had a shrub density of 1,200 ± 500 shrubs ha−1. Shrubs were classified into small (S), medium (M) and large (L), according to their volume (V) and leaf area index (LAI). The total yearly carbon dioxide (CO2) sequestration per species (SCy) was calculated multiplying the total photosynthetic leaf surface area (spt) of each species by the mean yearly photosynthetic rate and the total yearly photosynthetic activity time (in hours). Q. ilex and A. unedo had the highest SCy (46.2 ± 15.8 kg CO2 year−1, mean value), followed by P. latifolia (17.5 ± 6.2 kg CO2 year−1), E. arborea, E. multiflora, C. incanus, P. lentiscus, R. officinalis, and S. aspera (6.8 ± 4.2 kg CO2 year−1, mean value). The total yearly CO2 sequestration per shrub (SCshy) was 149 ± 5 kg CO2 year−1 in L, decreasing 30 % in M and 80 % in S shrubs. Taking into account the frequency of S, M and L and their SCshy, the total CO2 sequestration of the Mediterranean maquis was quantified in 80 Mg CO2 ha−1 year−1, corresponding to 22 Mg C ha−1 year−1. From a monetary viewpoint, this quantity could be valued to more than 500 US$ ha−1 year−1. Extending this benefit to the Mediterranean shrublands throughout the whole country, we obtained a nationwide estimated annual benefit in the order of $500 million.

Keywords

Carbon sequestration Evergreen species Economic benefit Global change Mediterranean shrublands 

References

  1. Allard V, Ourcival JM, Rambal S, Joffre R, Rocheteau A (2008) Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Glob Chang Biol 14:714–725CrossRefGoogle Scholar
  2. Aubert G (1978) Relations entre le sol et cinq espécies d’ericacées dans le Sud-est de la France. Oecol Plant 13:253–269Google Scholar
  3. Beier C, Emmett BA, Tietema A, Schmidt IK, Peñuelas J, Láng EK, Duce P, De Angelis P, Gorissen A, Estiarte M, de Dato GD, Sowerby A, Kröel-Dulay G, Lellei-Kovács E, Kull O, Mand P, Petersen H, Gjelstrup P, Spano D (2009) Carbon and nitrogen balances for six shrublands across Europe. Glob Biogeochem Cycle 23:GB4008. doi:10.1029/2008GB003381 CrossRefGoogle Scholar
  4. Bianchi L, Calamini G, Gregori E, Paci M, Tani A, Zorn G (2005) Valutazione degli effetti del rimboschimento in zone aride della Sardegna. Italia Forestale e Montana 1:47–66Google Scholar
  5. Boix-Fayos C, De Vente J, Albaladejo J, Martínez-Mena M (2009) Soil carbon erosion and stock as affect by land use changes at the catchment scale in Mediterranean ecosystems. Agr Ecosyst Environ 133:75–85CrossRefGoogle Scholar
  6. Brack CL (2002) Pollution mitigation and carbon sequestration by an urban forest. Environ Pollut 116:195–200CrossRefGoogle Scholar
  7. Bravo F, Lemay V, Jandl R, von Gadow K (2009) Managing forest ecosystems to cope with climate change: adaptation and mitigation strategies. IOP Conf Ser: Earth Environ Sci 6:162008. doi:10.1088/1755-1307/6/6/162008 CrossRefGoogle Scholar
  8. Bruno F, Gratani L, Manes F (1976) Primi dati sulla biomassa e produttività della lecceta di Castelporziano (Roma): biomassa e produzione di Quercus ilex. Ann Bot (Roma) 35–36:109–118Google Scholar
  9. Caravaca F, Alguacil MM, Figueroa D, Barea JM, Roldán A (2003) Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semi-arid Mediterranean area. For Ecol Manag 182:49–58CrossRefGoogle Scholar
  10. Castro J, Zamora R, Hódar JA, Gómez JM, Gómez-Aparicio L (2004) Benefits of using shrubs as nurse plants for reforestation in Mediterranean mountains: a 4-year study. Restor Ecol 12:352–358CrossRefGoogle Scholar
  11. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533CrossRefGoogle Scholar
  12. Cifuentes Jara M (2008) Aboveground biomass and ecosystem carbon pools in tropical secondary forests growing in six life zones of Costa Rica. PhD Dissertation, Oregon State UniversityGoogle Scholar
  13. Civeyrel L, Leclercq J, Demoly J-P Agnan Y, Quèbre N, Pélisser C, Otto T (2011) Molecular systematics, character evolution, and pollen morphology of Cistus and Halimium (Cistaceae). Plant Syst Evol 295:23–54CrossRefGoogle Scholar
  14. Crescente MF, Gratani L, Larcher W (2000) Shoot growth efficiency and production of Quercus ilex L., in different climate. Flora 197:2–9CrossRefGoogle Scholar
  15. Dauber E, Terán J, Guzmán R (2008) Estimaciones de biomasa y carbono en bosques naturales de Bolivia. Rev For Iberoam 1(1):1–10Google Scholar
  16. De Boeck HJ, Lemmens CMHM, Vicca S, Van den Berge J, Van Dongen S, Ivan A, Janssens IA, Ceulemans R, Nijs I (2007) How do climate warming and species richness affect CO2 fluxes in experimental grasslands? New Phytol 175:512–522CrossRefGoogle Scholar
  17. de Dato GD, Loperfido L, De Angelis P, Valentini R (2009) Establishment of a planted field with Mediterranean shrubs in Sardinia and its evaluation for climate mitigation and to combat desertification in semi-arid regions. iForest 2:77–84CrossRefGoogle Scholar
  18. Del Galdo I, Six J, Peressotti A, Cotrufo MF (2003) Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob Chang Biol 9:1204–1213CrossRefGoogle Scholar
  19. Evrendilek F, Berberoglu B, Taskinsu-Meydan S, Yilmaz E (2006) Quantifying carbon budget of conifer Mediterranean forest ecosystems, Turkey. Environ Monit Asses 119:527–543CrossRefGoogle Scholar
  20. FAO (2001) State of the world’s forests 2001. Food and Agriculture Organization of the United Nations. Rome, Italy, p 181Google Scholar
  21. Fioretto A, Papa S, Sorrentino G, Fuggi A (2001) Decomposition of Cistus incanus leaf litter in a Mediterranean maquis ecosystem: mass loss, microbial enzyme activities and nutrient changes. Soil Biol Biochem 33:311–321CrossRefGoogle Scholar
  22. Francaviglia R, Gataleta L, Marchionni M, Trinchera A, Aromolo R, Benedetti A, Nisini L, Morselli L, Brusori B, Olivieri P, Bernardi E (2004) Soil quality and vulnerability in a Mediterranean natural ecosystem of Central Italy. Chemosphere 55:455–466CrossRefGoogle Scholar
  23. Garcia C, Hernandez T, Roldan A, Martin A (2002) Effect of plant cover decline on chemical and microbiological parameters under Mediterranean climate. Soil Biol Biochem 5:635–642CrossRefGoogle Scholar
  24. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta-Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105(3-4):121–139CrossRefGoogle Scholar
  25. Garrigues S, Allard D, Baret F, Morisette J (2008) Multivariate quantification of landscape spatial heterogeneity using variogram models. Remote Sens Environ 112:216–230CrossRefGoogle Scholar
  26. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734 CrossRefGoogle Scholar
  27. Gisotti G, Collamarini D (1982) Suolo e vegetazione nella Tenuta di Castelporziano. Ist Graf Genio Rurale 9:35–56Google Scholar
  28. Goberna M, Sánchez J, Pascual JA, García C (2007) Pinus halepensis Mill. plantations did not restore organic carbon, microbial biomass and activity levels in a semi-arid Mediterranean soil. Appl Soil Ecol 36:107–115CrossRefGoogle Scholar
  29. Gorissen A, Tietema A, Joosten NN, Estiarte M, Peñuelas J, Sowerby A, Emmett BA, Beier C (2004) Climate change affects carbon allocation to the soil in shrublands. Ecosystems 7:650–661CrossRefGoogle Scholar
  30. Gotelli NJ, Entsminger GL (2001) Swap and fill algorithms in null model analysis: rethinking the knight’s tour. Oecologia 129:281–291CrossRefGoogle Scholar
  31. Gower ST, Norman JM (1991) Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology 72:1896–1900CrossRefGoogle Scholar
  32. Granier A, Reichstein M, Breda N, Janssens IA, Falge E, Ciais P, Grunwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Kostner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala T, Wang Q (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agr Forest Meteorol 143:123–145CrossRefGoogle Scholar
  33. Gratani L (1997) Canopy structure, vertical radiation profile and photosynthetic function in a Quercus ilex evergreen forest. Photosynthetica 33(1):139–149CrossRefGoogle Scholar
  34. Gratani L, Amadori M (1991) Post-fire resprouting of shrubby species in Mediterranean maquis. Vegetatio 96:137–143CrossRefGoogle Scholar
  35. Gratani L, Bombelli A (2001) Differences in leaf traits among Mediterranean broad-level evergreen shrubs. Ann Bot Fenn 38:15–24Google Scholar
  36. Gratani L, Crescente MF (1997) Phenology and leaf adaptative strategies of Mediterranean maquis plant. Ecol Mediter 23:11–19Google Scholar
  37. Gratani L, Crescente MF (2000) Map–making of plant biomass and leaf area index for management of protected areas. Aliso 19(1):1–12Google Scholar
  38. Gratani L, Varone L (2004a) Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. Photosynthetica 42(4):551–558CrossRefGoogle Scholar
  39. Gratani L, Varone L (2004b) Leaf key traits of Erica arborea L., Erica multiflora L. and Rosmarinus officinalis L. co-occurring in the Mediterranean maquis. Flora 199:58–69CrossRefGoogle Scholar
  40. Gratani L, Varone L (2006a) Carbon sequestration by Quercus ilex L. and Quercus pubescens Willd. and their contribution to decreasing air temperature in Rome. Urban Ecosyst 9:27–37CrossRefGoogle Scholar
  41. Gratani L, Varone L (2006b) Long-time variations in leaf mass and area of Mediterranean evergreen broad-leaf and narrow-leaf maquis species. Photosynthetica 44(2):161–168CrossRefGoogle Scholar
  42. Gratani L, Varone L (2007) Plant crown traits and carbon sequestration capability by Platanus hybrida Brot. in Rome. Landsc Urban Plan 81:282–286CrossRefGoogle Scholar
  43. Gratani L, Bombelli A, Covone F (2003) Variation in shrub structure and species co-occurrence in the Mediterranean maquis. J Medit Ecol 4(1):31–37Google Scholar
  44. Gratani L, Covone F, Larcher W (2006) Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees 20:549–558CrossRefGoogle Scholar
  45. Gratani L, Catoni R, Varone L (2011) Quercus ilex L. carbon sequestration capability related to shrub size. Environ Monit Assess 178:383–392CrossRefGoogle Scholar
  46. Haase P, Pugnaire FI, Clark SC, Incoll LD (2000) Photosynthetic rate and canopy development in the drought-deciduos shrub Anthyllis cytisoides L. J Arid Environ 46:79–91CrossRefGoogle Scholar
  47. Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14:170–176CrossRefGoogle Scholar
  48. Iglesias MR, Barchuk A, Grilli MP (2012) Carbon storage, community structure and canopy cover: a comparison along a precipitation gradient. For Ecol Manag 265:218–229CrossRefGoogle Scholar
  49. Intergovernmental Panel on Climate Change (IPCC) (1996) Climate change 1995: The IPCC scientific assessment. Cambridge University Press, CambridgeGoogle Scholar
  50. Isnard S, Rowe N, Speck T (2003) Growth habitat and mechanical architecture of sand dune-adapted climber Clematis flammula var. maritime L. Ann Bot 91:40–417CrossRefGoogle Scholar
  51. Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) (2010) La realizzazione in Italia del Progetto Corine Land Cover 2006. Rapporto 131/2010, ISPRA, Rome Google Scholar
  52. Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439CrossRefGoogle Scholar
  53. Karlik JF, Winer AM (2001) Plant species composition, calculated leaf masses and estimated biogenic emissions of urban landscape types from a field survey in Phoenix, Arizona. Landsc Urban Plan 53:123–134CrossRefGoogle Scholar
  54. Kaufmann MR, Troendle CA (1981) The relationships of leaf area and foliage biomass to sapwood conducting area in four subalpine forest tree species. Forest Sci 27:477–482Google Scholar
  55. Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149CrossRefGoogle Scholar
  56. Knoke T, Weber M (2006) Expanding carbon stocks in existing forests- a methodological approach for cost appraisal at the enterprise level. Mitig Adapt Strateg Glob Chang 11:579–605CrossRefGoogle Scholar
  57. Ma SY, Baldocchi DD, Xu LK, Hehn T (2007) Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agricultural grassland in California. Agr Forest Meteorol 147:151–171CrossRefGoogle Scholar
  58. Martínez ML (2003) Facilitation of seedling establishment by an endemic shrub in tropical coastal sand dunes. Plant Ecol 168:333–345CrossRefGoogle Scholar
  59. Meinzer FC, Goldstein G, Franco AC, Bustamante M, Igler E, Jackson P, Caldas L, Rundel PW (1999) Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species. Func Ecol 13:273–282CrossRefGoogle Scholar
  60. Metting FB, Smith JL, Amthor JS, Izaurralde RC (2001) Science needs and new technology for increasing soil carbon sequestration. Clim Change 51:11–34CrossRefGoogle Scholar
  61. Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295CrossRefGoogle Scholar
  62. Morales D, Jiménez MS, Gonzáles-Rodriguez AM, Cermák J (1996) Laurel forest in Tenerife, Canary Islands. I. The site, stand structure and stand leaf distribution. Trees 11:34–40CrossRefGoogle Scholar
  63. Muscolo A, Sidari M, Bagnato S, Mallamaci C, Mercurio R (2010) Gap size effects on above- and below-ground processes in a silver fir stand. Eur J Forest Res 129:355–365CrossRefGoogle Scholar
  64. Niklas KJ (1994) Comparison among biomass allocation and spatial distribution patterns of some vine, pteridophyte, and gymnosperm shoots. Am J Bot 81:1416–1421CrossRefGoogle Scholar
  65. Nowak DJ, Stevens JC, Sisinni SM, Luley C (2002) Effects of urban tree management and species selection on atmospheric carbon dioxide. J Arboriculture 28(3):113–122Google Scholar
  66. United States Department of Agriculture Natural Resources Conservation Service (USDA NRCS) (2000) Growing carbon: a new crop that helps agricultural producers and the climate too. Available from the Soil and Water Conservation Society. Available on-line at http://www.unl.edu/nac
  67. Olukoye GA, Wamicha WN, Kinyamario JI (2003) Assessment of the performance of exotic and indigenous tree and shrub species for rehabilitating saline soils of Northern Kenya. Afr J Ecol 41:164–170CrossRefGoogle Scholar
  68. Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4(4):196–202CrossRefGoogle Scholar
  69. Padilla FM, Vidal B, Sánchez J, Pugnaire FI (2010) Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: implications for land management. J Environ Manag 91:2688–2695CrossRefGoogle Scholar
  70. Pan Y, Birdsey R, Hom J, McCullough K (2009) Separating effects of changes in atmospheric composition, climate and land-use on carbon sequestration of U.S. Mid-Atlantic temperate forests. For Ecol Manag 259:151–164CrossRefGoogle Scholar
  71. Pariente S (2002) Spatial patterns of soil moisture as affected by shrubs, in different climatic conditions. Environ Monit Assess 733:237–251CrossRefGoogle Scholar
  72. Pausas JG, Bladé C, Valdecantos A, Seva JP, Fuentes D, Alloza JA, Vilagrosa A, Bautista S, Cortina J, Vallejo R (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice—a review. Plant Ecol 171:209–220CrossRefGoogle Scholar
  73. Peñas J, Benito B, Lorite J, Ballesteros M, Cañadas EM, Martinez-Ortega M (2011) Habitat fragmentation in arid zones: a case study of Linaria nigricans under land use changes (SE Spain). Environ Manag 48:168–176CrossRefGoogle Scholar
  74. Peper PJ, McPherson EG, Simpson JR, Gardner SL, Vargas KE, Xiao Q (2007) New York City, New York municipal forest resource analysis. Center for Urban Forest Research, USDA Forest Service, Pacific Southwest Research Station, DavisGoogle Scholar
  75. Pereira JS, Mateus JA, Aires LM, Pita G, Pio C, David JS, Andrade V, Banza J, David TS, Paço TA, Rodrigues A (2007) Net ecosystem carbon exchange in three contrasting Mediterranean ecosystem—the effect of drought. Biogeosciences 4:791–802CrossRefGoogle Scholar
  76. Rey Benayas JM, Camacho-Cruz A (2004) Performance of Quercus ilex saplings planted in abandoned Mediterranean cropland after longterm interruption of their management. For Ecol Manag 194:223–233CrossRefGoogle Scholar
  77. Richards KR, Stokes C (2004) A review of forest carbon sequestration cost studies: a dozen years of research. Clim Chang 63(1–2):1–48CrossRefGoogle Scholar
  78. Rotondi A, Rossi F, Asunis C, Cesaraccio C (2003) Leaf xeromorphic adaptations of some plants of a coastal Mediterranean macchia ecosystem. J Medit Ecol 4(3–4):25–35Google Scholar
  79. Sack L, Grubb PJ, Marañón T (2003) The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecol 168:139–163CrossRefGoogle Scholar
  80. Sardans J, Peñuelas J, Estiarte M, Prieto P (2008) Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Glob Chang Biol 14:2304–2316CrossRefGoogle Scholar
  81. Saxe H, Cannell MGR, Johnsen B, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–400CrossRefGoogle Scholar
  82. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17(5):223–230CrossRefGoogle Scholar
  83. Sfenthourakis S, Giokas S, Tzanatos E (2004) From sampling stations to archipelagos: investigating aspects of the assemblage of insular biota. Glob Ecol Biogeogr 13:23–35CrossRefGoogle Scholar
  84. Sharma CM, Baduni NP, Gairola S, Ghildiyal SK, Suyal S (2010) Tree diversity and carbon stocks of some major forest types of Garthwal Himalaya, India. For Ecol Manag 260:2170–2179CrossRefGoogle Scholar
  85. Torres AB, Marchant R, Lovett JC, Smart JCR, Tipper R (2010) Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. Ecol Econ 69:469–477CrossRefGoogle Scholar
  86. Tzatzanis M, Wrbka T, Sauberer N (2003) Landscape and vegetation responses to human impact in sandy coasts of Western Crete, Greece. J Nat Conserv 11(3):187–197CrossRefGoogle Scholar
  87. United Nations Framework Convention on Climate Change (UNFCCC) (1997) Kyoto Protocol to the United Nations Framework Convention on Climate ChangeGoogle Scholar
  88. Vilà M (1997) Effect of root competition and shading on resprouting dynamics of Erica multiflora L. J Veg Sci 81:71–80CrossRefGoogle Scholar
  89. Watson RT (2000) Land use, land-use change, and forestry: A special report of the IPCC. Cambridge University Press, Cambridge, p 377Google Scholar
  90. Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360–364CrossRefGoogle Scholar
  91. Werner C, Correia O, Beyschlag W (1999) Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecol 20:15–23CrossRefGoogle Scholar
  92. Wessel WW, Tietema A, Beier C, Emmett BA, Peñuelas J, Riis-Nielson T (2004) A qualitative ecosystem assessment for different shrublands in western Europe under impact of climate change. Ecosystems 7:662–671CrossRefGoogle Scholar
  93. Whittaker RH, Marks PL (1975) Methods of assessing terrestrial productivity. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, New York, pp 55–103CrossRefGoogle Scholar
  94. Woomer PL, Tieszen LL, Tappan G, Touré A, Sall M (2004) Land use change and terrestrial carbon stocks in Senegal. J Arid Environ 59:625–642CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Loretta Gratani
    • 1
  • Laura Varone
    • 1
  • Carlo Ricotta
    • 1
  • Rosangela Catoni
    • 1
  1. 1.Department of Environmental BiologySapienza University of RomeRomeItaly

Personalised recommendations