Advertisement

Integrated regional modelling and scenario development to evaluate future water demand under global change conditions

  • Anja SobollEmail author
  • Michael Elbers
  • Roland Barthel
  • Juergen Schmude
  • Andreas Ernst
  • Ralf Ziller
Original Article

Abstract

Within climate change impact research, the consideration of socioeconomic processes remains a challenge. Socioeconomic systems must be equipped to react and adapt to global change. However, any reasonable development or assessment of sustainable adaptation strategies requires a comprehensive consideration of human-environment interactions. This requirement can be met through multi-agent simulation, as demonstrated in the interdisciplinary project GLOWA-Danube (GLObal change of the WAter Cycle; www.glowa-danube.de). GLOWA-Danube has developed an integrated decision support tool for water and land use management in the Upper Danube catchment (parts of Germany and Austria, 77,000 km2). The scientific disciplines invoked in the project have implemented sixteen natural and social science models, which are embedded in the simulation framework DANUBIA. Within DANUBIA, a multi-agent simulation approach is used to represent relevant socioeconomic processes. The structure and results of three of these multi-agent models, WaterSupply, Household and Tourism, are presented in this paper. A main focus of the paper is on the development of global change scenarios (climate and society) and their application to the presented models. The results of different simulation runs demonstrate the potential of multi-agent models to represent feedbacks between different water users and the environment. Moreover, the interactive usage of the framework allows to define and vary scenario assumptions so as to assess the impact of potential interventions. It is shown that integrated modelling and scenario design not only provide valuable information, but also offer a platform for discussing complex human-environment-interactions with stakeholders.

Keywords

Multi-agent simulation Global change Regional modelling Integrated water resources management Water users Domestic water demand Tourism Interdisciplinary framework approach 

Notes

Acknowledgements

The authors acknowledge the German Federal Ministry of Education and Research for financial support. We would like to thank the governmental organisations, private companies and others who supported our work by providing data, advice or additional assistance. Furthermore, we are much obliged to our GLOWA-Danube colleagues for their helpful cooperation over the last few years. Special thanks are due to the anonymous reviewers who provided valuable comments.

References

  1. Alvisi S, Franchini M, Marinelli A (2003) A stochastic model for representing drinking water demand at residential level. Water Resour Manag 17(3):197–222CrossRefGoogle Scholar
  2. Athanasiadis I, Mentes A, Mitkas P, Mylopoulos Y (2005) A hybrid agent-based model for estimating residential water demand. Simulation 81(3):175–187CrossRefGoogle Scholar
  3. Aulinas M, Turon C, Sànchez-Marrè M (2009) Agents as a decision support tool in environmental processes. The state of the art. In: Cortés U, Poch M (eds) Advanced agent-based environmental management systems. Berlin, Birkhaeuser, pp 5–35CrossRefGoogle Scholar
  4. Baartz R (1994) Der Konflikt zwischen Sport und Umwelt dargestellt am Beispiel der Entwicklung des Golfsports im Raum Brandenburg-Berlin. StuttgartGoogle Scholar
  5. Barthel R, Nickel D, Meleg A, Trifkovic A, Braun J (2005) Linking the physical and the socio-economic compartments of an integrated water and land use management model on a river basin scale using an object-oriented water supply model. Phys Chem Earth 30(6–7):389–397Google Scholar
  6. Barthel R, Janisch S, Schwarz N, Trifkovic A, Nickel D, Schulz C, Mauser W (2008) An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environ Modell Softw 23:1095–1121CrossRefGoogle Scholar
  7. Barthel R, Janisch S, Nickel D, Trifkovic A, Hoerhan T (2010) Using the multiactor-approach in GLOWA-Danube to simulate decisions for the water supply sector under conditions of global climate change. Water Resour Manag 24:239–275CrossRefGoogle Scholar
  8. Bates BC, Kundzewicz ZW, Wu S, Palutikof JS (eds) (2008) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, GenevaGoogle Scholar
  9. Berger T, Birner R, Díaz J, McCarthy N, Wittmer H (2007) Capturing the complexity of water uses and water users within a multi-agent framework. Water Resour Manag 21(1):129–148CrossRefGoogle Scholar
  10. Börjeson L, Hojer M, Dreborg KH, Ekvall T, Finnveden G (2006) Scenario types and techniques. Towards a user’s guide. Futures 38:723–739CrossRefGoogle Scholar
  11. Bourdieu P (1984) Distinction. A social critique of the judgement of taste. Routledge, New YorkGoogle Scholar
  12. BUWAL (Bundesamt fuer Umwelt, Wald und Landschaft) (ed) (2004) Auswirkungen des Hitzesommers 2003 auf die Gewaesser. Dokumentation. In: Schriftenreihe Umwelt 369, BUWAL, BernGoogle Scholar
  13. Dingeldey A (2008) Modellierung der touristischen Attraktivität zur Bestimmung der Übernachtungsnachfrage im Einzugsbereich der Oberen Donau unter Berücksichtigung von Umwelteinflüssen. Dr. Hut, MunichGoogle Scholar
  14. Dingeldey A, Soboll A (2010) The impact of climate change on Alpine leisure tourism in Germany and Austria. In: Hergesell A, Liburd JJ (eds) Proceedings of BEST EN Think Tank X. Networking for Sustainable Tourism, Vienna/Austria. Sydney, pp101–115Google Scholar
  15. Ernst A, Schulz C, Schwarz N, Janisch S (2008) Modelling of water use decisions in a large, spatially explicit, coupled simulation system. In: Edmonds B, Hernández C, Troitzsch KG (eds) Social simulation. Technologies, advances and new discoveries. Information Science Reference, Hershey, New York, pp 138–149Google Scholar
  16. Galán JM, del Olmo R, López-Paredes A (2009) An agent based model for domestic water management in Valladolid metropolitan area. Water Resour Res 45:W05401CrossRefGoogle Scholar
  17. Giupponi C, Jakeman AJ, Karssenberg G, Hare MP (eds) (2006) Sustainable management of water resources. An integrated approach. Edward Elgar Publishing, CheltenhamGoogle Scholar
  18. Hajkowicz S, Collins K (2007) A review of multiple criteria analysis for water resource planning and management. Water Resour Manag 21(9):1553–1566CrossRefGoogle Scholar
  19. Hennicker R, Ludwig M (2006) Design and implementation of a coordination model for distributed simulations. In: Mayr HC, Breu R (eds) Modellierung 2006, Lecture Notes in Informatics P-82. Koellen Verlag, Bonn, pp 83–97Google Scholar
  20. Holman IP, Rounsevell MDA, Shackley S, Harrison PA, Nicholls RJ, Berry PM, Audsley E (2005) A regional, multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK. Clim Change 71:9–41CrossRefGoogle Scholar
  21. Jakeman AJ, Letcher RA (2003) Integrated assessment and modelling: features, principles and examples for catchment management. Environ Modell Softw 18:491–501CrossRefGoogle Scholar
  22. Ludwig R, Mauser W, Niemeyer S, Colgan A, Stolz R, Escher-Vetter H, Kuhn M, Reichstein M, Tenhunen J, Kraus A, Ludwig M, Barth M, Hennicker R (2003) Web-based modelling of energy, water and matter fluxes to support decision making in mesoscale catchments. The integrative perspective of GLOWA-Danube. Phys Chem Earth 28:621–634Google Scholar
  23. Marke, T (2008) Development and application of a model interface to couple land surface models with regional climate models for climate change risk assessment in the Upper Danube watershed. http://edoc.ub.uni-muenchen.de/9162/1/Marke_Thomas.pdf. Cited 01 Nov 2010
  24. Mauser W, Bach H (2009) PROMET. A physical hydrological model to study the impact of climate change on the water flows of medium sized mountain watersheds. J Hydrol 376(3–4):362–377CrossRefGoogle Scholar
  25. Microm (ed) (2010) microm consumer marketing. http://www.microm-online.de/Deutsch/Microm/index.jsp. Cited 19 Aug 2010
  26. Quinn PF, Hewett J, Doyle A (2004) Integrated water management. A multi-scale framework for decision support. J Hydrol 291:197–217CrossRefGoogle Scholar
  27. San Antonio Water System (ed) (2009) San Antonio water system. Stage 1 drought restrictions. http://www.saws.org/conservation/aquifermgmt/stage1.shtml. Cited 18 Aug 2010
  28. Sax M (2008) Entwicklung eines Konzepts zur computergestützten Modellierung der touristischen Wassernutzung im Einzugsgebiet der Oberen Donau unter Berücksichtigung des Klimawandels. In: Beitraege zur Wirtschaftsgeographie Regensburg vol 11. RegensburgGoogle Scholar
  29. Schwarz N, Ernst A (2009) Agent-based modelling of the diffusion of environmental innovations. An empirical approach. Technol Forecast Soc 76(4):497–511. doi: 10.1016/j.techfore.2008.03.024 CrossRefGoogle Scholar
  30. Seidl R, Ernst A (2008) Perception of climate change risks. A multi-agent simulation. In: Paul-B.-Baltes Lecture, Invited Address, IUPsyS Invited Symposium, Invited Symposium, Symposium, Paper Session, Poster Session', Int J Psychol 43(3):168–347Google Scholar
  31. Sinus Sociovision (ed) (2010) Sinus-Milieus. http://www.sociovision.de/de/loesungen/sinus-milieus.html. Cited 19 Aug 2010
  32. Soboll A, Schmude J (2011) Simulating tourism water consumption under climate change conditions using agent-based modeling. The example of ski areas. Ann Assoc Am Geogr (in press)Google Scholar
  33. STCRC (Sustainable Tourism Cooperative Research Centre) (ed) (2009) Australian tourism futures. Redefining the future. Communiqué. http://www.tourismfutures.com.au/Publications/2009Communique.pdf. Cited 19 Aug 2010
  34. Swart R, Marinova N (2010) Policy options in a worst case climate change world. Mitig Adapt Strateg Glob Change 15:531–549CrossRefGoogle Scholar
  35. Therond O, Belhouchette H, Janssen S, Louhichi K, Ewert F, Bergez JE, Wery J, Heckelei T, Olsson JA, Leenhardt D, van Ittersum M (2009) Methodology to translate policy assessment problems into scenarios. The example of the SEAMLESS integrated framework. Environ Sci Policy 12:619–630CrossRefGoogle Scholar
  36. UGrdL (Umweltoekonomische Gesamtrechnungen der Laender) (ed) (2009) Private Haushalte, Oekonomie, Oekologie. Analysen und Ergebnisse. http://www.ugrdl.de/ugrdl_analyse_2009.pdf. Cited 19 Aug 2010
  37. Varis O, Kajander T, Lemmela R (2004) Climate and water. From climate models to water resources management and vice versa. Climatic Change 66:321–344CrossRefGoogle Scholar
  38. VicWater (Victorian Water Industry Association Inc.) (ed) (2009) Victorian uniform drought water restriction guidelines. http://www.vicwater.org.au/uploads/Water%20Restrictions/Final%20Version%20Uniform%20Drought%20Water%20Restriction%20Guidelines.pdf. Cited 19 Aug 2010
  39. Yamout G, El-Fadel M (2005) An optimization approach for multi-sectoral water supply management in the Greater Beirut area. Water Resour Manag 19:791–812CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anja Soboll
    • 1
    Email author
  • Michael Elbers
    • 2
  • Roland Barthel
    • 3
  • Juergen Schmude
    • 1
  • Andreas Ernst
    • 2
  • Ralf Ziller
    • 3
  1. 1.Department of GeographyUniversity of MunichMunichGermany
  2. 2.Center for Environmental Systems ResearchUniversity of KasselKasselGermany
  3. 3.Institute of Hydraulic EngineeringUniversity of StuttgartStuttgartGermany

Personalised recommendations