Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective


By means of a theoretical model, bootstrap resampling and data provided by the International Commission On Large Dams (ICOLD (2003) World register of dams. we found that global large dams might annually release about 104 ± 7.2 Tg CH4 to the atmosphere through reservoir surfaces, turbines and spillways. Engineering technologies can be implemented to avoid these emissions, and to recover the non-emitted CH4 for power generation. The immediate benefit of recovering non-emitted CH4 from large dams for renewable energy production is the mitigation of anthropogenic impacts like the construction of new large dams, the actual CH4 emissions from large dams, and the use of unsustainable fossil fuels and natural gas reserves. Under the Clean Development Mechanism of the Kyoto Protocol, such technologies can be recognized as promising alternatives for human adaptations to climate change concerning sustainable power generation, particularly in developing nations owning a considerable number of large dams. In view of novel technologies to extract CH4 from large dams, we estimate that roughly 23 ± 2.6, 2.6 ± 0.2 and 32 ± 5.1 Tg CH4 could be used as an environmentally sound option for power generation in Brazil, China and India, respectively. For the whole world this number may increase to around 100 ± 6.9 Tg CH4.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Abril G, Guérin F, Richard S et al (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 19:doi:10.1029/2005GB002457

  2. Bambace LAW, Ramos FM, Lima IBT et al (2007) Mitigation and recovery of methane emissions from tropical hydroelectric dams. Energy (in press) (

  3. Bartolome LJ, de Wet C, Mander H et al (2000) Displacement, resettlement, rehabilitation, reparation and development, Thematic Review I.3 prepared as an input to the World Commission on Dams, Cape Town,

  4. Bastviken D, Cole J, Pace M et al (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:doi:10.1029/2004GB002238

  5. Berkamp G, McCartney M, Dugan P et al (2000) Dams, ecosystem functions and environmental restoration, Thematic Review II.1 prepared as an input to the World Commission on Dams, Cape Town,

  6. Bousquet P, Ciais P, Miller JB et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  Google Scholar 

  7. Dlugokencky EJ, Houweling S, Bruhwiler L et al (2003) Atmospheric methane levels off: temporary pause or a new steady-state? Geophys Res Lett 30:doi: 10.1029/2003GL018126

  8. Dlugokencky EJ, Masarie KA, Lang PM et al (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393:447–450

    Article  Google Scholar 

  9. Dlugokencky EJ, Lang PM, Masarie KA (2006) Atmospheric methane data at South Pole Station (89°59′ S, 24°48′ W, 2810 m), Antarctica. Thomas J. Conway, NOAA/ESRL Global Monitoring Division. On-line at the World Data Centre for Greenhouse Gases – Global Atmosphere Watch.

  10. Duchemin E, Lucotte M, Canuel R et al (2006) Reservoir emissions upon ice break-up: first assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ice break-up. Lakes Reservoirs Res Manage 11:9–19

    Article  Google Scholar 

  11. EPE (2006) Balanço Energético Nacional 2006: Ano base 2005. Relatório final/Ministério de Minas e Energia. Empresa de Pesquisa Energética, Rio de Janeiro. p. 188.

  12. Etheridge DM, Steele LP, Francey RJ et al (2002) Historical CH4 mixing ratios from Law Dome (Antarctica) and Summit (Greenland) ice cores. Historical CH4 record from DE08, DE08-2 and DSS ice cores (Antarctica). In: Trends: a compendium of data on global change. On line at the Carbon Dioxide Information Analysis Center.

  13. Etiope G (2004) New directions: GEM – geologic emissions of methane, the missing source in the atmospheric methane budget. Atmos Environ 38:3099–3100

    Article  Google Scholar 

  14. Fearnside PM (2002) Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruí Dam) and the energy policy implications. Water Air Soil Pollut 133:69–96

    Article  Google Scholar 

  15. Fearnside PM (2004) Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly clean energy source. Clim Change 66:1–8

    Article  Google Scholar 

  16. Fearnside PM (2005a) Do hydroelectric dams mitigate global warming? The case of Brazil’s Curuá-Una Dam. Mitig Adapt Strat Glob Change 10:675–691

    Article  Google Scholar 

  17. Fearnside PM (2005b) Brazil’s Samuel Dam: lessons for hydroelectric development policy and the environment in Amazonia. Environ Manage 35:1–19

    Article  Google Scholar 

  18. Guérin F, Abril G (2004) Kinetics of methane oxidation in a tropical reservoir. Geophys Res Abstracts 6:03922

    Google Scholar 

  19. Guérin F, Abril G, Richard S et al (2006) Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophys Res Lett 33:doi:10.1029/2006GL027929

  20. Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci 101:16109–16114

    Article  Google Scholar 

  21. Houghton RA, Hackler JL (2002) Carbon flux to the atmosphere from land-use changes. In: Trends: A compendium of data on global change. Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, USA.

  22. International Commission On Large Dams (ICOLD) 2003 (2003) World register of dams.

  23. IPCC (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual, Intergovernmental Panel on Climate Change. Workbook (Volume 2). Module 1, Energy. p. 22.

  24. Kemenes A, Forsberg BR, Melack JM (2006) Gas release below Balbina dam. In: Proceedings of 8 ICSHMO, Foz do Iguaçu, Brazil. April 24–28, 2006, INPE, pp 663–667

  25. Keppler F, Hamilton JTG, Brass M et al (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  Google Scholar 

  26. Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus-B 50:128–150

    Article  Google Scholar 

  27. Lelieveld J (2006) A nasty surprise in the greenhouse. Nature 443:405–406

    Article  Google Scholar 

  28. Lima IBT (2005) Biogeochemical distinction of methane releases from two Amazon hydroreservoirs. Chemosphere 59:1697–702

    Article  Google Scholar 

  29. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model Comput Simul 8:3–30

    Article  Google Scholar 

  30. Melack JM, Hess LL, Gastil M et al (2004) Regionalization of methane emissions in the Amazon basin with microwave remote sensing. Global Change Biol 10:530–544

    Article  Google Scholar 

  31. Ramos FM, Lima IBT, Rosa RR et al (2006) Extreme event dynamics in methane ebullition fluxes from tropical reservoirs. Geophys Res Lett 33:doi:10.1029/2006GL027943

  32. Ramos FM, Bambace LAW, Lima IBT et al (2007) Methane stocks in tropical hydropower reservoirs as a potential energy source. Clim Change (under review, second revision)

  33. Ramaswamy V (2001) In: Houghton JT et al (eds) Climate change 2001: The scientific basis. Cambridge University Press, pp 349–416

  34. Rosa LP, Santos MA (2000) Certainty and uncertainty in the science of greenhouse gas emissions from hydroelectric reservoirs. Thematic Review II.2 prepared as an input to the World Commission on Dams, Cape Town,

  35. Ruddiman WF (2003) The anthropogenic era began thousands of years ago. Clim Change 61:261–293

    Article  Google Scholar 

  36. Ruddiman WF, Vavrus SJ, Kutzbach JE (2005) A test of the overdue-glaciation hypothesis. Quat Sci Reviews 24:1–10

    Article  Google Scholar 

  37. Saint Louis VL, Kelly CA, Duchemin E et al (2000) Reservoir surface as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775

    Article  Google Scholar 

  38. Shindell DT, Faluvegi G, Bell N et al (2005) An emissions-based view of climate forcing by methane and tropospheric ozone. Geophys Res Lett 32:doi:10.1029/2004GL021900

  39. Soumis N, Lucotte M, Canuel R et al (2005) Hydroelectric reservoirs as anthropogenic sources of greenhouse gases. In: Lehr JH, Keeley J (eds) Water encyclopedia: Surface and agricultural water. Wiley-Interscience, Hoboken, N. J., pp 203–210

  40. Stern DI, Kaufmann RK (1996) Estimates of global anthropogenic methane emissions 1860–1993. Chemosphere 33:159–176. (See also

    Google Scholar 

  41. Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth-Science Rev 57:177–210

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ivan B. T. Lima.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lima, I.B.T., Ramos, F.M., Bambace, L.A.W. et al. Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective. Mitig Adapt Strateg Glob Change 13, 193–206 (2008).

Download citation


  • Emission mitigation
  • MDL
  • Methane recovery
  • Renewable energy
  • Reservoir
  • Spillway
  • Turbine