Global Supply of Biomass for Energy and Carbon Sequestration from Afforestation/Reforestation Activities

  • Michael Obersteiner
  • G. Alexandrov
  • Pablo C. Benítez
  • Ian McCallum
  • Florian Kraxner
  • Keywan Riahi
  • Dmitry Rokityanskiy
  • Yoshiki Yamagata
Article

Abstract

In this paper we provide an analytical framework to estimate the joint production of biomass and carbon sequestration from afforestation and reforestation activities. The analysis is based on geographical explicit information on a half-degree resolution. For each grid-cell the model estimates forest growth using a global vegetation model and chooses forest management rules. Land prices, cost of forest production and harvesting are determined as a function of grid specific site productivity, population density and estimates of economic wealth. The sensitivity of the results due to scenario storylines is assessed using different population and economic growth assumptions, which are consistent with B1 and A2 of the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC-SRES) marker scenarios. Considerable differences in the economic supply schedules are found. However, technical potentials seem to converge given constancy in other underlying assumptions of the model.

Keywords

bioenergy afforestation/reforestation carbon sequestration global supply geography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, G.A., Yamagata, Y. and Oikawa, T.: 1999, ‘Towards a model for projecting net ecosystem production of the world forests’, Ecological Modeling 123, 183–191.CrossRefGoogle Scholar
  2. Alexandrov, G.A., Oikawa, T. and Yamagata, Y.: 2002, ‘The scheme for globalization of a process-based model explaining gradations in terrestrial NPP and its application’, Ecological Modeling 148, 293–306.CrossRefGoogle Scholar
  3. Benítez, P.C. and Obersteiner, M.: 2003, ‘Site identification for carbon sequestration in Latin America: A grid-based economic approach’, in: Conference Proceedings of the First Latin American and Caribbean Congress of Environmental and Resource Economics, 9–11 July 2003, Cartagena de Indias, Columbia. Available at: http://www.alear.org.
  4. Benítez, P.C., Olschewski, R., Koning, F.D. and López, M.: 2001, Análisis costo-beneficio de usos del suelo y fijación de carbono en sistemas forestales de Ecuador Noroccidental (Cost Benefit Analysis of Land Use and Carbon Sequestration in Forestry Systems of Northwest Ecuador). TÖB TWF-30s., Tropical Ecology Support Program (TÖB), German Technical Cooperation (GTZ), Eschborn, Germany (in Spanish).Google Scholar
  5. Benítez, P.C., McCallum, I., Obersteiner, M. and Yamagata, Y.: 2004, Global Supply for Carbon Sequestration: Identifying Least-Cost Afforestation Sites Under Country Risk Consideration. Interim Report IR-04-022. International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  6. Berndes, G., Hoogwijk, M.M. and van den Broek, R.: 2003, ‘The contribution of biomass in the future global energy system: A review of 17 studies’, Biomass & Bioenergy 25(1), 1–28. (NWS-E-2003-40).CrossRefGoogle Scholar
  7. Carrere, R. and Fonseca, H. (eds.): 2003, Plantations are not Forests. World Rainforest Movement, ISBN: 9974-7782-1-2, Montevideo.Google Scholar
  8. CIESIN: 2000, Gridded Population of the World (GPW), Version 2. Center for International Earth Science Information Network (CIESIN), Columbia University; International Food Policy Research Institute (IFPRI); and World Resources Institute (WRI). CIESIN, Columbia University, Palisades, NY, USA. Available at: http://sedac.ciesin.columbia.edu/plue/gpw.
  9. De Cara, St. and Jayet, P. A.: 2000, ‘Emissions of greenhouse gases from agriculture: The heterogeneity of abatement costs in France’, European Review of Agricultural Economics 27(3), 281–303.CrossRefGoogle Scholar
  10. de Jong, B.H., Tipper, R. and Montoya-Gómez, G.: 2000, ‘An economic analysis of the potential for carbon sequestration by forests: Evidence from Southern Mexico’, Ecological Economics 33, 313–327.CrossRefGoogle Scholar
  11. Dieter, M. and Elsasser, P.: 2004, Economic Efficiency and Competitiveness for Forest GHG Sequestration Projects in Germany, Arbeitsbericht des Instituts für Ökonomie 2004/11, Bundesversuchsanstalt für Forst und Holzwirtschaft Hamburg, Germany.Google Scholar
  12. Ecosecurities: 2002, Baseline Determination for Plantar: Evaluation of the Emissions Reduction Potential of the Plantar Project, Prototype Carbon Fund, The World Bank, Washington DC, USA.Google Scholar
  13. ESRI: 1998, World Countries, 1998, Environmental Systems Research Institute (ESRI), Redlands, California, USA. Available at: http://www.esri.com.
  14. FAO: 1999, ‘Background Paper 2. Bioenergy’, Paper prepared for FAO/Netherlands Conference on ‘The Multifunctional Character of Agriculture and Land’, 12–17 September 1999, Maastricht, The Netherlands.Google Scholar
  15. FAO: 2002, FAOSTAT Database, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available at: http://apps.fao.org.
  16. Fearnside, P.M.: 1995, ‘Global warming response in Brazil's forest sector: Comparison of project-level costs and benefits’, Biomass and Bioenergy 8(5), 309–322.CrossRefGoogle Scholar
  17. Gruebler, A., Chirkov, V., Goujon, A., Kolp, P., Lutz, W., Nakicenoivic, N., O'Neill, B., Prommer, I., Riahi, K. and Scherbov, S.: 2005, Regional, National, and Spatially Explicit Projections of Economic and Demographic Change Based on SRES. IIASA Interim Report IR-05-001, International Institute for Applied Systems Analysis, Austria (forthcoming).Google Scholar
  18. GTOPO30: 1996, Global Digital Elevation Model (DEM) with a Horizontal Grid Spacing of 30 Arc Seconds, US Geological Survey's EROS Data Center (EDC). Available at: http://edcdaac.usgs.gov/gtopo30/gtopo30.html.
  19. Haque, A.K.E., Read, P. and Ali, M.E.: 1999, The Bangladesh MSP Pilot Project Proposal for GEF Funding of Capacity Building for Country Driven Projects, Working Paper, Institute of Development, Environment, and Strategic Studies (IDESS), North-South University, Dhaka, Bangladesh, 15 pp.Google Scholar
  20. Hoogwijk, M.M.: 2004, On the Global and Regional Potential of Renewable Energy Sources, Ph.D. Thesis, University of Utrecht, Netherlands.Google Scholar
  21. IPCC: 2001a, Climate Change 2001: Impacts, Adaptation and Vulnerability, Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge.Google Scholar
  22. IPCC: 2001b, Special Report on Emission Scenarios, A Special Report of Working Group III of Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge.Google Scholar
  23. Kartha, S. and Larson, E.D.: 2000, Bioenergy Primer: Modernized Biomass Energy for Sustainable Development, United Nations Development Program, New York, NY, 133 pp.Google Scholar
  24. Levandrowski, J., Peters, M., Jones, C., House, R., Sperow, M., Eve, M. and Paustian, K.: 2004, Economic of Sequestering Carbon in US Agricultural Sector, USDA Technical Bulletin Number 1909, Washington DC, April.Google Scholar
  25. Lundmark, R.: 2003, The Supply of Forest-Based Biomass for the Energy Sector: The Case of Sweden, Interim Report IR-03-059, International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  26. Obersteiner, M.: 1998, The Pan Siberian Forest Industry Model (PSFIM): A Theoretical Concept for Forest Industry Analysis, Interim Report IR-98-033, International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  27. Obersteiner, M.: 1999a, Carbon Budget of the Forest Industry of the Russian Federation: 19282012, Interim Report IR-99-033, International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  28. Obersteiner, M.: 1999b, Efficiency Gaps and Economies of Scale in the Siberian Forest Industry. Interim Report IR-99-060, International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  29. Obersteiner, M., Jonas, M. and Nilsson, S.: 2002, ‘Quantifying a fully verifiable Kyoto’, The World Resources Review (forthcoming).Google Scholar
  30. Obersteiner, M., Rametsteiner, E. and Nilsson, S.: 2001, Cap Management of LULUCF Options. Interim Report IR-01-011. International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  31. Obersteiner, M. and Benitez, P.C.: 2003, Supply of Carbon Sinks Through Afforestation on the Territory of the Former Soviet Union. Mimeo. International Institute for Applied Systems Analysis.Google Scholar
  32. Ramankutty, N., Foley, J.A., Norman, J. and McSweeney, K.: 2001, ‘The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change’. Manuscript in revision, Global Ecology and Biogeography. Available at: http://www.sage.wisc.edu/atlas/.
  33. Richards, K.R. and Stokes, C.: 2004, ‘A review of forest carbon sequestration cost studies: A dozen years of research’, Climatic Change 68, 1–48.CrossRefGoogle Scholar
  34. Rosillo-Calle, F.: 2000, ‘The role of biomass energy in rural development’, In: Proceedings of the Third Encontro de Energia no Meio Rural, 12–15 September, Campinas, SP, Brazil. Available at: http://www.proceedings.scielo.br/scielo.php?script=sci_arttext&pid=MSC0000000022000000200011&1ng=en&nrm=van.
  35. Schlamadinger, B., Obersteiner, M., Michaelowa, A., Grubb, M., Azar, C., Yamagata, Y., Goldberg, D., Read, P., Kirschbaum, M.U.F., Fearnside, P.M., Sugiyama, T., Rametsteiner, E. and Böswald, K.: 2001a, ‘Capping the cost of compliance with the kyoto protocol and recycling revenues into Land-use projects’, The Scientific World 1, 271–280.CrossRefGoogle Scholar
  36. Schlamadinger, B., Grubb, M., Azar, C., Bauen, A. and Berndes, G.: 2001b, Carbon Sinks and Biomass Energy Production: A Study of Linkages, Options and Implications, Climate Strategies, International Network for Climate Policy Analysis. London, UK.Google Scholar
  37. Schneider, U.A. and McCarl, B.A.: 2003, ‘Economic potential of biomass based fuels for greenhouse gas emission mitigation’, Environmental and Resource Economics 24(4), 291–312.CrossRefGoogle Scholar
  38. Sohngen, B. and Sedjo, R.: 2000, ‘Potential carbon flux from timber harvests and management on the context of a global timber market’, Climatic Change 44, 151–172.CrossRefGoogle Scholar
  39. Trexler, M.C. and Haugen, C.: 1995, Keeping it Green: Evaluating Tropical Forestry Strategies to Mitigate Global Warming, World Resource Institute, Washington DC, USA.Google Scholar
  40. USGS: 2003, Global Land Cover Characteristics (GLCC) Data Base, Version 2.0. United States Geological Survey (USGS). Available at: http://edcdaac.usgs.gov/glcc/glcc.html.
  41. World Bank: 2003, World Development Indicators. Table 5.7. The World Bank, Washington DC, USA.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Michael Obersteiner
    • 1
  • G. Alexandrov
    • 2
  • Pablo C. Benítez
    • 3
  • Ian McCallum
    • 1
  • Florian Kraxner
    • 1
  • Keywan Riahi
    • 1
  • Dmitry Rokityanskiy
    • 1
  • Yoshiki Yamagata
    • 2
  1. 1.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  2. 2.National Institute for Environmental Studies (NIES)Climate Change Research ProjectTsukubaJapan
  3. 3.Dept. of EconomicsUniversity of VictoriaVictoriaCanada

Personalised recommendations