Estimating High Latitude Carbon Fluxes With Inversions Of Atmospheric CO2

  • Roger Dargaville
  • David Baker
  • Christian Rödenbeck
  • Peter Rayner
  • Philippe Ciais
Article

Abstract

Atmospheric inversions have proven to be useful tools, showing for example the likely existence of a large terrestrial carbon sink in the northern mid-latitudes. However, as we go to smaller spatial scales the uncertainties in the inversions increase rapidly, and the task of finding the distribution of the sink between North America, Europe and Asia has been shown to be very difficult. The uncertainty in the fluxes due to network selection, transport model error and inversion set up tends to be too high for studying either net annual fluxes or interannual variability on spatial scales such as the North American Boreal or Eurasian Boreal regions. We discuss the path forward; to couple together the atmospheric inversions with process based terrestrial carbon models, creating carbon data assimilation systems. Such systems are being developed now and could prove to be very powerful. The multi-disciplinary nature of the data assimilation system requires information from flux towers, soil and above ground biomass inventories, remote sensed fields, atmospheric CO2 concentrations and climate data as well as model development and will need a massive community effort if it will succeed.

Keywords:

Global carbon cycle atmospheric inversions Boreal ecosystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angert, A., Biraud, S., Bonfils, C., Buermann, W. and Fung, I.: 2004, ‘CO2 seasonality indicates origin of post-Pinatubo sink’, Geophys. Res. Letters 31, Art. L11103.Google Scholar
  2. Andres, R.J., Marland, G., Fung, I. and Matthews, E.: 1996, ‘A 1× 1 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990’, Glob. Biogeochem. Cyc 10, 419–429.CrossRefGoogle Scholar
  3. Baker, D.F., Law, R.M., Gurney, K.R., Rayner, P., Peylin, P., Denning, A.S., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I.Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S. and Zhu, Z.: (2006)[] ‘TransCom3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003’, Global Biogeochem. Cycles, 20, GB1002, doi:10.1029/2004GB002439.Google Scholar
  4. Bousquet, P., Ciais, P., Peylin, P., Ramonet, M. and Monfray, P.: 1999, ‘Inverse modeling of annual atmospheric CO2 sources and sinks. 1. Method and control inversion’, J. Geophys. Res 104, 26161–26178.CrossRefGoogle Scholar
  5. Dargaville, R.J., Law, R.M. and Pribac, F.: 2000, ‘Implications of interannual variability in atmospheric circulation on modelled CO2 concentrations and source estimates’, Global Biogeochem. Cycles 14, 931–943.CrossRefGoogle Scholar
  6. Dargaville, R.J., McGuire, A.D. and Rayner, P.J.: 2002, ‘Estimates of large-scale fluxes in high latitudes from terrestrial biosphere models and an inversion of atmospheric CO2 measurements’, Climatic Change 55, 273–285.CrossRefGoogle Scholar
  7. Dargaville, R.J., Doney, S.C. and Fung, I.Y.: 2003, ‘Inter-annual variability in the interhemispheric atmospheric CO2 gradient: Contributions from transport and the seasonal rectifier’, Tellus 55B, 711–722.CrossRefGoogle Scholar
  8. Denning, A., Holzer, M., Gurney, K., Heimann, M., Law, R., Rayner, P., Fung, I., Fan, S.-M., Taguchi, S., Friedlingstein, P., Balkanski, Y., Taylor, J., Maiss, M. and Levin, I.: 1999, ‘Three-dimensional transport and concentrations of SF6’, a model inter-comparison study, (TransCom 2), Tellus B 51, 266–297.CrossRefGoogle Scholar
  9. Fan, S., Gloor, M., Mahlman, J., Pacala, S., Samiento, J., Takahashi, T. and Tans, P.: 1998, 'A large terrestrial carbon sink in North America implied by atmospheric and oceanic CO2 data and models’, Science 282, 442–446.CrossRefGoogle Scholar
  10. Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Baker, D., Bousquet, P., Bruwiler, L., Chen, Y.H., Ciais, P., Fan, S., Fung, I.Y., Gloor, E., Heimann, M., Higuchi, K., John, J. and Kowlcyzk, E.: 2003, ‘TransCom3 CO2 inversion comparison: 1: Annual mean control results to transport and prior flux information’ Tellus 55B, 555–579.CrossRefGoogle Scholar
  11. Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Pak, B.C., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.H., Ciais, P., Fung, I.Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Peylin, P., Prather, M. and Taguchi, S.: 2004, ‘Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks’, Global Biogeochem. Cycles 18, GB1010, doi:10.1029/2003GB002111.Google Scholar
  12. Gu, L., Baldocchi, D.D., Worfsy, S.C., Munger, J.W., Michalsky, J.J., Urbanski S.P. and Boden, T.A.: 2003, ‘Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis.’ Science 299, 2035–2038.CrossRefGoogle Scholar
  13. Houghton, R.A. and Hackler, J.L.: 2002, ‘Carbon flux to the atmosphere from land-use changes’, In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.Google Scholar
  14. Kaminski, T., Heimann, M. and Giering, R.: 1999, ‘A course grid three-dimensional global inversion model of the atmospheric transport’, 1: Adjoint model and Jacobian matrix, J. Geophys. Res. 104, 18535–19553.CrossRefGoogle Scholar
  15. Kaminski, T., Rayner, P.J., Heimann, M. and Enting, I.G.: 2001, ‘On aggregation errors in atmospheric transport inversions’, J. Geophys. Res. 106(D5), 4703–4715.CrossRefGoogle Scholar
  16. Law, R.M., Rayner, P.J., Denning, A.S., Erickson, D., Fung, I.Y., Heimann, H., Piper, S.C., Ramonet, M., Taguchi, S., Taylor, J.A., Trudinger, C.M. and Watterson, I.G.: 1996, ‘Variations in modelled atmospheric transport of carbon dioxide and the consequences for CO2 inversions’, Global Biogeochem. Cycles 10, 783–796.CrossRefGoogle Scholar
  17. Marland, G., Boden, T.A. and Andres, R.J.: 2003, ‘Global, Regional, and National CO2 Emissions.’ In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.Google Scholar
  18. Rayner, P.J., Enting, I.G., Francey, R.J. and Langenfelds, R.L.: 1999, ‘Reconstructing the recent carbon cycle from atmospheric CO2’, δ 13C and O2/N2 observations, Tellus 51B, 213–232.CrossRefGoogle Scholar
  19. Rayner, P.J., Scholze, M., Knorr, W., Kaminski, T., Giering R. and Widmann, H.: 2005, ‘Two decades of terrestrial carbon fluxes from a Carbon Cycle Data Assimilation System (CCDAS)’, Global Biogeochem. Cycles, 19, GB2026, doi:10.1029/2004GB002254.Google Scholar
  20. Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M.: 2003a, 'CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport’, Atmos. Chem. Phys 3, 1919–1964.CrossRefGoogle Scholar
  21. Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M.: 2003b, ‘Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport’, Tellus 55B, 488–497.CrossRefGoogle Scholar
  22. Takahashi, T., Suntherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R.H., Feely, R.A., Sabine, C., Olafsson, J. and Nojiri, Y.: 2002, ‘Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effect’, Deep-Sea Research II 49, 1601–1623.CrossRefGoogle Scholar
  23. Tans, P.P, Conway, T.J. and Nakazawa, T.: 1989, ‘Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model’, J. Geophys. Res. 94, 5151–5172.CrossRefGoogle Scholar
  24. Tans, P.P., Fung I.Y. and Takahashi, T.: 1990, ‘Observational constraints in the global atmospheric CO2 budget’, Science 247, 1431–1438.CrossRefGoogle Scholar
  25. Zhuang, Q., McGuire, A.D., Melillo, J.M., Clein, J.S., Dargaville, R.J., Kicklighter, D.W., Myneni, R.B., Dong, J., Romanovsky, V.E., Harden, J. and Hobbie, J.E.: 2003, Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: A modeling analysis of the influences of soil thermal dynamics’, Tellus 55B, 751–776.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Roger Dargaville
    • 1
    • 4
  • David Baker
    • 2
  • Christian Rödenbeck
    • 3
  • Peter Rayner
    • 1
  • Philippe Ciais
    • 1
  1. 1.Laboratoire des Sciences du Climat et de l'EnvironnementParisFrance
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Max-Planck-Institut für BiogeochemieJenaGermany
  4. 4.Climpact, University of Pierre and Marie Curie, IOC UNESCOParisFrance

Personalised recommendations