Satellite Remote Sensing of Terrestrial Net Primary Production for the Pan-Arctic Basin and Alaska

  • J. S. Kimball
  • M. Zhao
  • K. C. McDonald
  • S. W. Running


We applied a terrestrial net primary production (NPP) model driven by satellite remote sensing observations of vegetation properties and daily surface meteorology from a regional weather forecast model to assess NPP spatial and temporal variability for the pan-Arctic basin and Alaska from 1982 to 2000. Our results show a general decadal trend of increasing NPP for the region of approximately 2.7%, with respective higher (3.4%) and lower (2.2%) rates for North America and Eurasia. NPP is both spatially and temporally dynamic for the region, driven largely by differences in productivity rates among major biomes and temporal changes in photosynthetic canopy structure and spring and summer air temperatures. Mean annual NPP for boreal forests was approximately 3 times greater than for Arctic tundra on a unit area basis and accounted for approximately 55% of total annual carbon sequestration for the region. The timing of growing season onset inferred from regional network measurements of atmospheric CO2 drawdown in spring was inversely proportional to annual NPP calculations. Our findings indicate that recent regional warming trends in spring and summer and associated advances in the growing season are stimulating net photosynthesis and annual carbon sequestration by vegetation at high latitudes, partially mitigating anthropogenic increases in atmospheric CO2. These results also imply that regional sequestration and storage of atmospheric CO2 is being altered, with potentially greater instability and acceleration of the carbon cycle at high latitudes.


AVHRR arctic tundra boreal forest carbon cycle climate change NPP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amiro, B.D., Todd, J.B., Wotton, B.M., Logan, K.A., Flannigan, M.D., Stocks, B.J., Mason, J.A., Martell, D.L. and Hirsch, K.G.: 2001, ‘Direct carbon emissions from Canadian forest fires 1959–1999’, Canadian Journal Of Forest Research 31, 512–525.CrossRefGoogle Scholar
  2. Armstrong, R.L. and Brodzik, M.J.: 1995, ‘An Earth-gridded SSM/I data set for cryospheric studies and global change monitoring’, Advances in Space Science and Technology 16(10), 155–163.CrossRefGoogle Scholar
  3. Barber, V., Juday, G.P. and Finney, B.P.: 2000, ‘Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress’, Nature 405, 668–673.CrossRefGoogle Scholar
  4. Bonan, G.B. and Shugart, H.H.: 1989, ‘Environmental factors and ecological processes in boreal forests’, Annual Review of Ecology and Systematics 20, 1–28.CrossRefGoogle Scholar
  5. Bonan, G.B. and Van Cleve, Nd K.: 1992, ‘Soil temperature, nitrogen mineralization and carbon source-sink relationships in boreal forests’, Canadian Journal of Forest Research 22, 629.CrossRefGoogle Scholar
  6. Chapin, F.S. III, McGuire, A.D., Randerson, J., Pielke Sr., R., Baldocchi, D., Hobbie, S.E., Roulet, N., Eugster, W., Kasischke, E., Rastetter, E.B., Zimov, A. and Running, S.W.: 2000, ‘Arctic and boreal ecosystems of western North America as components of the climate system’, Global Change Biology 6(1), 211–223.CrossRefGoogle Scholar
  7. Churkina, G. and Running, S.W.: 1998, ‘Contrasting climatic controls on the estimated productivity of different biomes’, Ecosystems 1, 206–215.CrossRefGoogle Scholar
  8. Ciais, P., Tans, P.P., Trolier, M., White, J.W.C. and Francey, R. J.: 1995 ‘A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2’, Science 269, 1098–1101.CrossRefGoogle Scholar
  9. Comiso, J.: 2003, ‘Warming trends in the Arctic from clear sky satellite observations’, Journal of Climate 16, 3498–3510.CrossRefGoogle Scholar
  10. Conard, S.G., Sukhinin, A.I., Stocks, B.J., Cahoon, D.R., Davidenko, E.P. and Ivanova, G.A.: 2002, ‘Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia’, Climatic Change 55, 197–211.CrossRefGoogle Scholar
  11. Conway, T.J., Tans, P.P., Waterman, L.S., Thoning, K.W., Kitzis, D.R., Masarie, K.A. and Zhang, N.: 1994, ‘Evidence for interannual variability of the carbon cycle from the NOAAA/CMDL global air sampling network’, Journal of Geophysical Research 99, 22831–22855.CrossRefGoogle Scholar
  12. D'Arrigo, R.D. and Jacoby, G.C.: 1993, ‘Tree growth-climate relationships at the northern boreal forest treeline of North America: Evaluation of potential response to increasing carbon dioxide’, Global Biogeochemical Cycles 7, 525–535.CrossRefGoogle Scholar
  13. DeFries, R.S., Hansen, M., Townshend, J.RG. and Sohlberg, R.: 1998, ‘Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers’, International Journal of Remote Sensing 19(16), 3141–3168.CrossRefGoogle Scholar
  14. Erickson, D.J., Rasch, P.J., Tans, P.P., Friedlingstein, P., Ciais, P., Maier-Reimer, E., Six, K., Fischer, C.A. and Walters S.: 1996, ‘The seasonal cycle of atmospheric CO2: A study based on the NCAR Community Climate Model (CCM2)’, Journal Of Geophysical Research 101, 15079–15097.CrossRefGoogle Scholar
  15. Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T. and Tans, P.: 1998, ‘A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models’, Science 282, 442–446.CrossRefGoogle Scholar
  16. Fleming, R.A.: 2000, ‘Climate change and insect disturbance regimes in Canada's boreal forests’, World Resources Review 12, 520–554.Google Scholar
  17. Fleming, R.A., Candau, J.-N. and McAlpine, R.S.: 2002, ‘Landscape-scale analysis of interactions between insect defoliation and forest fire in central Canada’, Climatic Change 55, 251–272.CrossRefGoogle Scholar
  18. Goetz, S.J. and Prince, S.D.: 1996, ‘Remote sensing of net primary production in boreal forest stands’, Agricultural and Forest Meteorology 78, 149–179.CrossRefGoogle Scholar
  19. Gower, S.T., Vogel, J., Norman, J., Kucharik, C.J., Steele, S. and Stow, T.K.: 1997, ‘Carbon distribution and above ground net primary production in aspen, jack pine and black spruce stands in Saskatchewan and Manitoba, Canada’, Journal of Geophysical Research 102(D24), 29029–29041.CrossRefGoogle Scholar
  20. Heimann, M., Esser, G., Haxeltine, A., Kaduk, J., Kicklighter, D.W., Knorr, W., Kohlmaier, G.H., McGuire, A.D., Melillo, J., Moore, B., Otto, R.D., Prentice, I.C., Sauf, W., Schloss, A., Sitch, S., Wittenberg, U. and Wurth, G.: 1998, ‘Evaluation of terrestrial Carbon Cycle models through simulations of the seasonal cycle of atmospheric CO2: First results of a model intercomparison study’, Global Biogeochemical Cycles 12(1), 1–24.CrossRefGoogle Scholar
  21. Heinsch F.A., Reeves, M., Votava, P. et al.: 2003, User's Guide, GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm.
  22. IGBP: 1992, Requirements for Terrestrial Biospheric Data for IGBP Core Projects. IGBP-DIS Working Paper #2 (June 1992), IGBP-DIS, Université de Paris, Paris, France, 24 pp. + app.Google Scholar
  23. IGBP-DIS: 1995, The IGBP-DIS Global 1 Km Land Cover Data Set: A validation strategy, A. Belward (ed.), IGBP-DIS, Université de Paris, France.Google Scholar
  24. IPCC: 2001, ‘Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel of Climate Change’, in J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. vander Linden, X. Dai, K. Maskell and C.A. Johnson (eds.), Cambridge University Press, 881 pp.Google Scholar
  25. Isaev, A.S., Korovin, G.N., Bartalev, S.A., Ershov, D.V., Janetos, A., Kasischke, E.S., Shugart, H.H., French, N.H.F., Orlick, B.E. and Murphy, T.L.: 2002, ‘Using remote sensing to assess russian forest fire carbon emissions’, Climatic Change 55, 235–249.CrossRefGoogle Scholar
  26. Jarvis, P. and Linder S.: 2000, ‘Constraints to growth of boreal forests’, Nature 405, 904–905.CrossRefGoogle Scholar
  27. Kasischke, E.S., Williams, D. and Barry, D.: 2002, ‘Analysis of the patterns of large fires in the boreal forest region of Alaska’, International Journal of Wildland Fire 11(2), 131–144.CrossRefGoogle Scholar
  28. Keeling, C.D., Chin, J.F.S. and. Whorf, T.P.: 1996, ‘Increased activity of northern vegetation inferred from atmospheric CO2 measurements’, Nature 382, 146–149.CrossRefGoogle Scholar
  29. Keyser, A.R., Kimball, J.S., Nemani, R.R. and Running, S.W.: 2000, ‘Simulating the effects of climate change on the carbon balance of North American high latitude forests’, Global Change Biology 6(1), 185–195.CrossRefGoogle Scholar
  30. Kimball, J.S., McDonald, K.C., Running, S.W. and Frolking, S.: 2004, ‘Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests’, Remote Sensing of Environment 90, 243–258.CrossRefGoogle Scholar
  31. Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Wollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R. and Fiorino, M.: 2001, ‘The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and Documentation’, Bulletin of the American Meteorological Society 82, 247–267.Google Scholar
  32. Lal, R. and Kimble, J.M.: 2000, ‘Soil C pool and dynamics in cold ecoregions’, in R. Lal, J.M. Kimble and B.A. Steward (eds.), Advances in Soil Science: Global Climate Change and Cold Regions Ecosystems, Lewis Publishers, New York, pp. 3–28.Google Scholar
  33. Lucht, W., Prentice, I.C., Myneni, R.B., Sitch, S., Friedlingstein, P., Cramer, W., Bousquet, P., Buermann, W. and Smith, B.: 2002, ‘Climatic control of the high-latitude vegetation greening trend and Pinatubo effect’, Science 296, 1687–1689.CrossRefGoogle Scholar
  34. McDonald, K.C., Kimball, J.S., Njoku, E., Zimmermann, R. and Zhao, M.: 2004. ‘Variability in springtime thaw in the terrestrial high latitudes: Monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing’, Earth Interactions 8(20), 1–23.CrossRefGoogle Scholar
  35. McGuire, A.D., Apps, M., Chapin III, F.S., Dargaville, R., Flannigan, M.D., Kasischke, E.S, Kicklighter, D., Kimball, J., Kurz, W., McCrae, D.J., McDonald, K., Melillo, J., Myneni, R., Stocks, B.J., Verbyla, D.L. and Zhuang, Q.: 2004, ‘Land cover disturbances and feedbacks to the climate system in Canada and Alaska’, in G. Gutman, et al., (eds) Land Change Science. Springer, pp. 139–161, Chapter 9.Google Scholar
  36. Myneni, R.B., Nemani, R.R. and Running, S.W.: 1997, ‘Estimation of global leaf area index and absorped par using radiative transfer models’, IEEE Transactions on Geoscience and Remote Sensing 35, 1380–1393.CrossRefGoogle Scholar
  37. Nemani R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B. and Running, S.W.: 2003, ‘Climate-driven increases in global terrestrial net primary production from 1982 to 1999’, Science 300, 1560–1563.CrossRefGoogle Scholar
  38. Oechel, W.C., Vourlitis, G.L., Hastings, S.J. and Bocharev, S.J.: 1995, ‘Change in arctic CO2 flux over two decades: Effects of climate change at Barrow, Alaska’, Ecological Applications 5, 846–855.CrossRefGoogle Scholar
  39. Oechel, W.C., Vourilitis, G.L., Hastings, S.J., Zulueta, R.M, Hinzman, L.D. and Kane, D.L.: 2000, ‘Acclimation of ecosystem CO2 exchange in the alaskan arctic in response to decadal climatic warming’, Nature 406, 978–981.CrossRefGoogle Scholar
  40. Oelke, C., Zhang, T. and Serreze, M.C.: 2004, ‘Modeling evidence for recent warming of the Arctic soil thermal regime’, Geophysical Research Letters, 31, L07208, doi:10.1029/2003GL019300.Google Scholar
  41. Olson, R. J., Johnson, K.R., Zheng, D.L. and Scurlock, J.M.O.: 2001, Global and Regional Ecosystem Modeling: Databases of Model Drivers and Validation Measurements, ORNL Technical Memorandum TM-2001/196, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.Google Scholar
  42. Potter, C.S., Klooster, S. and Brooks, V.: 1999, ‘ Interannual variability in terrestrial net primary production: Exploration of trends and controls on regional to global scales’, Ecosystems 2, 36–48.CrossRefGoogle Scholar
  43. Prince, S.D. and S.N. Goward: 1995, ‘Global primary production: A remote sensing approach’, Journal of Biogeography 22, 815–835.CrossRefGoogle Scholar
  44. Randerson, J.T., Field, C.B., Fung, I.Y. and Tans, P.P.: 1999, ‘Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes’, Geophysical Research Letters 26(17), 2765–2768.CrossRefGoogle Scholar
  45. Randerson, J.T., Thompson, M.V., Conway, T.J., Fung, I.Y. and Field, C.B.: 1997, ‘The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide’, Global Biogeochemical Cycles 11(4), 535–560.CrossRefGoogle Scholar
  46. Ruess, R.W., Van Cleve, L., Yarie, J. and Viereck, L. A.: 1996, ‘Comparative estimates of fine root production in successional taiga forests of interior Alaska’, Canadian Journal of Forest Research 26(8), 1326–1336.CrossRefGoogle Scholar
  47. Running, S.W., Thornton, P.E., Nemani, R. and Glassy, J.M.: 2000, ‘Global terrestrial gross and net primary productivity from the Earth Observing System’, in O. Sala, R. Jackson and H. Mooney (eds.), Methods in Ecosystem Science, Springer-Verlag, New York, pp. 44–57.CrossRefGoogle Scholar
  48. Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M., Reeves, M. and Hashimoto, H.: 2004, ‘A continuous satellite–derived measure of global terrestrial primary production’, Bioscience 54, 547–560.CrossRefGoogle Scholar
  49. Saugier, B., Roy, J. and Mooney, H.A.: 2001, ‘Estimations of global terrestrial productivity: Converging toward a single number?’, in J. Roy, B. Saugier and H.A. Mooney (eds.), Terrestrial Global Productivity, Academic Press, San Diego, California, pp. 543–557.CrossRefGoogle Scholar
  50. Schimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S., Painter, T.H., Parton, W.J. and Townsend, A.R.: 1994, ‘Climate, edaphic and biotic controls over storage and turnover of carbon in soils’, Global Biogeochemical Cycles 8, 279.CrossRefGoogle Scholar
  51. Schimel, J.P., Kielland, K. and Chapin III, F.S.: 1996, ‘Nutrient availability and uptake by tundra plants’, in J.F. Reynolds and J.D. Tenhunen (eds.), Ecological Studies, Vol. 120, Springer-Verlag, Berlin, Heidelberg, pp. 203–221.Google Scholar
  52. Schulze, E.-D., Lloyd, J., Kelliher, F.M., Wirth, C., Rebmann, C., Luehker, B., Mund, M., Knohl, A., Milyukova, I.M., Schulze, W., Ziegler, W., Varlagin, A.B., Sogachev A.F. and Valentini, R. et al.: 1999, ‘Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink – a synthesis’, Global Change Biology 5(6), 703–722.CrossRefGoogle Scholar
  53. Serreze, M.C., Bromwich, D.H., Clark, M.P., Ertringer, A.J., Zhang, T. and Lammers, R.: 2002, ‘Large-scale hydro-climatology of the terrestrial Arctic drainage system’, Journal of Geophysical Research107(D2), 8160, doi:10.1029/2001JD00919.CrossRefGoogle Scholar
  54. Serreze, M.C., Walsh, J.E., Chapin III, F.S., Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, J., Morison, W.C., Zhang, T. and Barry, R.G.: 2000, ‘Observational evidence of recent change in the northern high latitude environment’, Climatic Change 46, 159–207.CrossRefGoogle Scholar
  55. Shaver, G.R. and Jonasson, S.: 2001, ‘Productivity of arctic ecosystems’, in J. Roy, B. Saugier and H.A. Mooney (eds.), Terrestrial Global Productivity, Academic Press, San Diego, pp. 189–210.CrossRefGoogle Scholar
  56. Stocks, B.J., Mason, J.A., Todd, J.B., Bosch, E.M., Wotton, B.M., Amiro, B.D., Flannigan, M.D., Hirsch, K.G., Logan, K.A., Martell, D.L. and Skinner, W.R.: 2002, ‘Large forest fires in Canada, 1959–1997’, Journal Of Geophysical Research 108(D1), 8149, Doi: 10.1029/2001JD000484.Google Scholar
  57. Sturm, M., Racine, C. and Tape, K.: 2001, ‘Increasing shrub abundance in the Arctic’, Nature 411, 546–547.CrossRefGoogle Scholar
  58. Suni, T., Berninger, F., Markkanen, T., Keronen, P., Rannik, Ü. and Vesala, T.: 2003, ‘Interannual variability and timing of growing-season CO2 exchange in a boreal forest’, Journal of Geophysical Research 108(D9), 4265, doi:10.1029/2002JD002381.CrossRefGoogle Scholar
  59. Van Cleve, K. and Viereck, L.A.: 1980, ‘Forest succession in relation to nutrient cycling in the boreal forest of Alaska’ in D.C. West, H. H. Shugart and D.B. Botkin (eds.), Forest Succession: Concepts and Application, Springer-Verlag, New York, pp. 185–211.Google Scholar
  60. Van Wijk, M.T., Clemmensen, K.E., Shaver, G.R., Williams, M., Callaghan, T.V., Chapin III, F.F., Cornelissen, J.H.C., Gough, L., Hobbie, S.E., Jonasson, S., Lee, J.A., Michelsen, A., Press, M.C., Richardson, S.J. and Rueth, H.: 2003, Global Change Biology 10, 105–123.CrossRefGoogle Scholar
  61. Zhao, M., Heinsch, F.A., Nemani, R.R. and Running, S.W.: 2005, ‘Improvements of the MODIS terrestrial gross and net primary production global data set’, Remote Sensing of Environment 95(2), 164–176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • J. S. Kimball
    • 1
    • 2
  • M. Zhao
    • 2
  • K. C. McDonald
    • 3
  • S. W. Running
    • 2
  1. 1.Flathead Lake Biological Station, Division of Biological SciencesThe University of MontanaPolsonUSA
  2. 2.Numerical Terradynamic Simulation Group, Department of Ecosystem and Conservation SciencesThe University of MontanaMissoulaUSA
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations