Bio-char Sequestration in Terrestrial Ecosystems – A Review

Abstract

The application of bio-char (charcoal or biomass-derived black carbon (C)) to soil is proposed as a novel approach to establish a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. Apart from positive effects in both reducing emissions and increasing the sequestration of greenhouse gases, the production of bio-char and its application to soil will deliver immediate benefits through improved soil fertility and increased crop production. Conversion of biomass C to bio-char C leads to sequestration of about 50% of the initial C compared to the low amounts retained after burning (3%) and biological decomposition (< 10–20% after 5–10 years), therefore yielding more stable soil C than burning or direct land application of biomass. This efficiency of C conversion of biomass to bio-char is highly dependent on the type of feedstock, but is not significantly affected by the pyrolysis temperature (within 350–500 C common for pyrolysis). Existing slash-and-burn systems cause significant degradation of soil and release of greenhouse gases and opportunies may exist to enhance this system by conversion to slash-and-char systems. Our global analysis revealed that up to 12% of the total anthropogenic C emissions by land use change (0.21 Pg C) can be off-set annually in soil, if slash-and-burn is replaced by slash-and-char. Agricultural and forestry wastes such as forest residues, mill residues, field crop residues, or urban wastes add a conservatively estimated 0.16 Pg C yr−1. Biofuel production using modern biomass can produce a bio-char by-product through pyrolysis which results in 30.6 kg C sequestration for each GJ of energy produced. Using published projections of the use of renewable fuels in the year 2100, bio-char sequestration could amount to 5.5–9.5 Pg C yr−1 if this demand for energy was met through pyrolysis, which would exceed current emissions from fossil fuels (5.4 Pg C yr−1). Bio-char soil management systems can deliver tradable C emissions reduction, and C sequestered is easily accountable, and verifiable.

This is a preview of subscription content, log in to check access.

References

  1. Accardi-Dey, A. and Gschwend, P.M.: 2002, ‘Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments’, Environmental Science and Technology36, 21–29.

    Article  Google Scholar 

  2. Bailis, R., Ezzati, M. and Kammen, D.M.: 2005, ‘Mortality and greenhouse gas impacts of biomass and petrolium energy futures in Africa’, Science308, 98–103.

    Article  Google Scholar 

  3. Batjes, N.H.: 1998, ‘Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil’, Biology and Fertility of Soils27, 230–235.

    Article  Google Scholar 

  4. Beaton, J.D., Peterson, H.B. and Bauer, N.: 1960, ‘Some aspects of phosphate adsorption by charcoal’, Soil Science Society of America Proceedings24, 340–346.

    Article  Google Scholar 

  5. Berglund, L.M., DeLuca, T.H. and Zackrisson, O.: 2004, ‘Activated carbon amendments to soil alters nitrification rates in Scots pine forests’, Soil Biology and Biochemistry36, 2067–2073.

    Article  Google Scholar 

  6. Berndes, G., Hoogwijk, M. and van den Broeck, R.: 2003, ‘The contribution of biomass in the future global energy supply: A review of 17 studies’, Biomass and Bioenergy25, 1–28.

    Article  Google Scholar 

  7. Bird, M.I., Moyo, C., Veendaal, E.M., Lloyd, J. and Frost, P.: 1999, ‘Stability of elemental carbon in a savanna soil’, Global Biogeochemical Cycles13, 923–932.

    Article  Google Scholar 

  8. Bridgwater, A.V., Toft, A.J. and Brammer, J.G.: 2002, ‘A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion’, Renewable and Sustainable Energy Reviews6, 181–246.

    Article  Google Scholar 

  9. Briggs, D.G.: 1994, Forest Products Measurements and Conversion Factors: With Special Emphasis on the U.S. Pacific Northwest, Institute of Forest Resources, Contribution 75, University of Washington: Seattle, WA.

    Google Scholar 

  10. Brodowski, S.B.: 2004, Origin, Function, and Reactivity of Black Carbon in the Arable Soil Environment, Ph.D. Dissertation, Institute of Soil Science and Soil Geography, Bayreuth, University of Bayreuth.

  11. Brodowski, S., Amelung, W., Haumeier, L., Abetz, C. and Zech, W.: 2005, ‘Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy’, Geoderma, in press, DOI: 10.1016/j.geoderma.2004.12.019.

  12. Clifton-Brown, J.C., Stampfl, P.F. and Jones, M.B.: 2004, ‘Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions’, Global Change Biology10, 509–518.

    Article  Google Scholar 

  13. Coomes, O.T. and Burt G.J.: 2001, ‘Peasant charcoal production in the Peruvian Amazon: rain forest use and economic reliance’, Forest Ecology and Management 140, 39–50.

    Article  Google Scholar 

  14. Daud, W.M.A.W., Ali, W.S.W. and Sulaiman, M.Z.: 2001, ‘Effect of carbonization temperature on the yield and porosity of char produced from palm shell’, Journal of Chemical Technology and Biotechnology76, 1281–1285.

    Article  Google Scholar 

  15. Day, D., Evans, R.J., Lee, J.W. and Reicosky, D.: 2005, ‘Economical CO2, SO x , and NO x capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration’, Energy30, 2558–2579.

    Article  Google Scholar 

  16. Demirbas, A.: 2001, ‘Carbonization ranking of selected biomass for charcoal, liquid and gaseous products’, Energy Conversion and Management42, 1229–1238.

    Article  Google Scholar 

  17. Demirbas, A.: 2004a, ‘Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues’, Journal of Analytical and Applied Pyrolysis72, 243–248.

    Article  Google Scholar 

  18. Demirbas, A.: 2004b, ‘Determination of calorific values of bio-chars and pyro-oils from pyrolysis of beech trunkbarks’, Journal of Analytical and Applied Pyrolysis72, 215–219.

    Article  Google Scholar 

  19. DOE: 1999, Carbon Sequestration Research and Development, Reichle, D., et al. (Eds.), U.S. Department of Energy, Office of Science, Washington DC, http://www.osti.gov/energycitations/ servlets/purl/810722-9s7bTP/native/

  20. Erickson, C.: 2003, ‘Historical ecology and future explorations’, in J. Lehmann, D.C. Kern, B. Glaser and W.I. Woods (eds.), Amazonian Dark Earths: Origin, Properties, Management, (pp. 455–500) Dordrecht, Kluwer Academic Publishers.

    Google Scholar 

  21. FAO: 1983, Simple Technologies for Charcoal Making, Rome, Italy, Food and Agriculture Organization of the United Nations, Forestry Paper No. 41.

  22. FAO: 1991, Charcoal Production and Pyrolysis Technologies, P. Thoresen (ed.), Rome, Italy, Food and Agriculture Organization of the United Nations.

  23. FAO: 2004, FAOSTAT Data, Rome, Italy, Food and Agriculture Organization of the United Nations, http://apps.fao.org/default.jsp.

  24. FFTC: 2001, Application of Rice Husk Charcoal, Taipei, FFTC Leaflet for Agriculture, No. (4).

  25. Fischer, G., Prieler, S. and van Velthuizen, H.: 2005, ‘Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia’, Biomass and Bioenergy28, 119–132.

    Article  Google Scholar 

  26. Freibauer, A., Rounsevell, M.D.A., Smith, P. and Verhagen, J.: 2004, ‘Carbon sequestration in agricultural soils of Europe’, Geoderma122, 1–23.

    Article  Google Scholar 

  27. Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G. and Zech, W.: 2000, ‘Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region’, Organic Geochemistry31, 669–678.

    Article  Google Scholar 

  28. Glaser, B., Haumaier, L., Guggenberger, G. and Zech, W.: 2001, ‘The Terra Preta phenomenon – A model for sustainable agriculture in the humid tropics’, Naturwissenschaften88, 37–41.

    Article  Google Scholar 

  29. Glaser, B., Lehmann, J. and Zech, W.: 2002, ‘Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – A review’, Biology and Fertility of Soils35, 219–230.

    Article  Google Scholar 

  30. Gustaffson, Ö., Haghseta, F., Chan, C., Macfarlane, J. and Gschwend, P.M.: 1997, ‘Quantification of the dilute sedimentary soot phase: Implications for the PAH speciation and bioavailability’, Environmental Science and Technology31, 203–209.

    Article  Google Scholar 

  31. Hamer, U., Marschner, B., Brodowski, S. and Amelung, W.: 2004, ‘Interactive priming of black carbon and glucose mineralization’, Organic Geochemistry35, 823–830.

    Article  Google Scholar 

  32. Hughes, R.F., Kauffman, J.B. and Cummings, D.L.: 2000, ‘Fire in the Brazilian Amazon: 3. Dynamics of biomass, C and nutrient pools in regenerating forests’, Oecologia124, 574–588.

    Article  Google Scholar 

  33. IPCC: 1996, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Greenhouse Gas Inventory Reference Manual Volume 3, J.T. Houghton, L.G. Meira Filho, B. Lim, K. Treanton, I. Mamaty, Y. Bonduki, D.J. Griggs and B.A. Callender (eds.), IPCC/OECD/IEA, Bracknell, UK, Meteorological Office.

  34. IPCC: 2000, Land Use, Land-Use Change, and Forestry, Watson, R.T., Noble, R., Bolin, B., Ravindranath, N.H., Verardo, D.J. and Dokken, D.J. (eds.), Intergovernmental Panel on Climatic Change Special Report, Cambridge, Cambridge University Press.

  35. IPCC: 2001, Climate Change 2001: The Scientific Basis, Technical Summary by Workgroup I of the Intergovernmental Panel on Climatic Change, Cambridge, UK, Cambridge University Press.

  36. Iyobe, T., Asada, T., Kawata, K. and Oikawa, K.: 2004, ‘Comparison of removal efficiencies for ammonia and amine gases between woody charcoal and activated carbon’, J. Health Sci.50, 148–153.

    Article  Google Scholar 

  37. Izaurralde, R.C., Rosenberg, N.J. and Lal, R.: 2001, ‘Mitigation of climate change by soil carbon sequestration’, Advances in Agronomy70, 1–75.

    Article  Google Scholar 

  38. Jenkinson, D.S. and Ayanaba, A.: 1977, ‘Decomposition of carbon-14 labeled plant material under tropical conditions’, Soil Science Society of America Journal41, 912–915.

    Article  Google Scholar 

  39. Kamm, J.: 2004, ‘A new class of plants for a biofuel feedstock energy crop’, Applied Biochemistry and Biotechnology113–116, 55–70.

    Article  Google Scholar 

  40. Katyal, S., Thambimuthu, K. and Valix, M.: 2003, ‘Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics’, Renewable Energy28, 713-725.

    Article  Google Scholar 

  41. Kawamoto, K., Ishimaru, K. and Imamura, Y.: 2005, ‘Reactivity of wood charcoal with ozone’, Journal of Wood Science51, 66–72.

    Article  Google Scholar 

  42. Ketterings, Q.M., Wibowo, T.T., van Noordwijk, M. and Penot E.: 1999, ‘Farmers’ perspectives on slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia’, Forest Ecology and Management120, 157–169.

    Article  Google Scholar 

  43. Kim, S., Kaplan, L.A., Benner, R. and Hatcher, P.G.: 2004, ‘Hydrogen-deficient molecules in natural riverine water samples – evidence for the existence of black carbon in DOM’, Marine Chemistry92, 225–234.

    Article  Google Scholar 

  44. Lal, R.: 2004, ‘Agricultural activities and the global carbon cycle’, Nutrient Cycles in Agroecosystems70, 103–116.

    Article  Google Scholar 

  45. Lee, J.W. and Li, R.: 2003, ‘Integration of coal-fired energy systems with CO2 sequestration through NH4HCO3 production’, Energy Conversion and Management44, 1535–1546.

    Article  Google Scholar 

  46. Lehmann, J., da Silva Jr, J.P., Rondon, M., Cravo, M.S., Greenwood, J., Nehls, T., Steiner, C. and Glaser, B.: 2002, ‘Slash-and-char – a feasible alternative for soil fertility management in the central Amazon?’, Proceedings of the 17thWorld Congress of Soil Science, (pp. 1–12) Bangkok, Thailand. CD–ROM Paper no. 449.

  47. Lehmann, J., da Silva Jr., J.P., Steiner, C., Nehls, T., Zech, W. and Glaser, B.: 2003a, ‘Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments’, Plant and Soil249, 343–357.

    Article  Google Scholar 

  48. Lehmann, J., Kern, D.C., German, L.A., McCann, J., Martins, G.C. and Moreira, A.: 2003b, ‘Soil Fertility and Production Potential’, in J. Lehmann, D.C. Kern, B. Glaser and W.I. Woods (eds.), Amazonian Dark Earths: Origin, Properties, Management, (pp. 105–124) Dordrecht, Kluwer Academic Publishers.

    Google Scholar 

  49. Lehmann, J. and Rondon, M.: 2005, ‘Bio-char soil management on highly-weathered soils in the humid tropics’, in N. Uphoff (ed.), Biological Approaches to Sustainable Soil Systems, Boca Raton, CRC Press, in press.

  50. Lemus, R. and Lal, R.: 2005, ‘Bioenergy crops and carbon sequestration’, Critical Reviews in Plant Sciences24, 1–21.

    Article  Google Scholar 

  51. Li, X., Hagaman, E., Tsouris, C. and Lee, J.W.: 2003, ‘Removal of carbon dioxide from flue gas by ammonia carbonization in the gas phase’, Energy & Fuels17, 69–74.

    Article  Google Scholar 

  52. Liu, S., Kaire, M., Wood, E., Diallo, O. and Tieszen, L.L.: 2004, ‘Impacts of land use and climate change on carbon dynamics in south-central Senegal’, Journal of Arid Environments59, 583–604.

    Article  Google Scholar 

  53. Malkow, T.: 2004, ‘Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal’, Waste Management24, 53–79.

    Article  Google Scholar 

  54. Marchetti, C.: 1977, ‘Geo-engineering and CO2 problem’, Climate Change1, 59–68.

    Article  Google Scholar 

  55. Masiello, C.A. and Druffel, E.R.M.: 1998, ‘Black carbon in deep-sea sediments’, Science280, 1911–1913.

    Article  Google Scholar 

  56. Masiello, C.A.: 2004, ‘New directions in black carbon organic geochemistry’, Marine Chemistry92, 201–213.

    Article  Google Scholar 

  57. Meier, D. and Faix, O.: 1999, ‘State of the art of applied fast pyrolysis of lignocellulosic materials – a review’, Bioresource Technology68, 71–77.

    Article  Google Scholar 

  58. Mizuta, K., Matsumoto, T., Hatate, Y., Nishihara, K. and Nakanishi T.: 2004, ‘Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal’, Bioresource Technology95, 255–257.

    Article  Google Scholar 

  59. Nik-Azar, M., Hajaligol, M.R., Sohrabi, M. and Dabir, B.: 1997, ‘Mineral matter effects in rapid pyrolysis of beech wood’, Fuel Processing Technology51, 7–17.

    Article  Google Scholar 

  60. Nishimiya, K., Hata, T. and Imamura, Y.: 1998, ‘Analyses of chemical structure of wood charcoal by X-ray photoelectron spectroscopy’, Journal of Wood Science44, 56–61.

    Article  Google Scholar 

  61. Nonhebel, S.: 2005, ‘Renewable energy and food supply: Will there be enough land?’ Renewable and Sustainable Energy Reviews9, 191–201.

    Article  Google Scholar 

  62. Nye, P.H. and Greenland, D.J.: 1960, The Soil under Shifting Cultivation. London, Commonwealth Bureau of Soils Technological Communication 51, 156p.

    Google Scholar 

  63. Okimori, Y., Ogawa, M. and Takahashi, F.: 2003, ‘Potential of CO2 emission reductions by carbonizing biomass waste from industrial tree plantation in south Sumatra, Indonesia’, Mitigation andAdaptation Straegies for Global Change8, 261–280.

    Article  Google Scholar 

  64. Oya, A. and Iu, W.G.: 2002, ‘Deodorization performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine’, Carbon40, 1391–1399.

    Article  Google Scholar 

  65. Palm, C., Alegre, J., Arevalo, L., Mutuo, P., Mosier, A., Coe, R. 2004. ‘Nitrous oxide and methane fluxes in six different land use systems in Peruvian Amazon’, Global Biogeochemical Cycles16, 1073–1082.

    Google Scholar 

  66. Park, B.B., Yanai, R.D., Sahm, J.M., Lee, D.K. and Abrahamson, L.P.: 2005, ‘Wood ash effects on plant and soil in a willow bioenergy plantation’, Biomass and Bioenergy28, 355–365.

    Article  Google Scholar 

  67. PCF: 2003, 2003 PCF Annual Report, Prototype Carbon Fund, The World Bank, Washington DC.

  68. Pessenda, L.C.R., Gouveia, S.E.M. and Aravena, R.: 2001, ‘Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal’, Radiocarbon43, 595–601.

    Article  Google Scholar 

  69. Pimentel, D., Herz, M., Glickstein, M., Zimmerman, M., Allen, R., Becker, K., Evans, J., Hussain, B., Sarsfeld, R., Grosfeld, A. and Seidel, T.: 2002, ‘Renewable energy: current and potential issues’, Bioscience52, 1111–1120.

    Article  Google Scholar 

  70. Post, W.M. and Kwon, K.C.: 2000, ‘Soil carbon sequestration and land-use change: Processes and potential’, Global Change Biology6, 317–328.

    Article  Google Scholar 

  71. Radovic, L.R., Moreno-Castilla, C. and Rivera-Utrilla, J.: 2001, ‘Carbon materials as adsorbents in aqueous solutions’, in L.R. Radovic (ed.), Chemistry and Physics of Carbon, (pp. 227–405) New York, Marcel Dekker.

    Google Scholar 

  72. Rasmussen, P.E., Goulding, K., Brown, W.T., Grace, J.R., Janzen, H.H. and Korschens, M.: 1998, ‘Long-term agroecosystem experiments: Assessing agricultural sustainability and global change’, Science282, 893–896.

    Article  Google Scholar 

  73. Raveendran, K., Ganesh, A. and Khilar, K.C.: 1995, ‘Influence of mineral matter on biomass pyrolysis characteristics’, Fuel74, 1812–1822.

    Article  Google Scholar 

  74. Richter, D.D., Markewitz, D., Trumbore, S.E. and Wells, C.G.: 1999, ‘Rapid accumulation and turnover of soil carbon in a re-establishing forest’, Nature400, 56–58.

    Article  Google Scholar 

  75. Rondon, M., Lehmann, J., Ramirez, J. and Hurtado, M.P.: 2004, ‘Biologial nitrogen fixation by common beans (Phaseoulus vulgaris) increases with charcoal additions to soils’, in Integrated Soil Fertility Management in the Tropics, (pp. 58–60) 2004 Annual Report of the TSBF Institute, CIAT, Cali, Colombia.

  76. Rondon, M., Ramirez, J.A. and Lehmann, J.: 2005, ‘Charcoal additions reduce net emissions of greenhouse gases to the atmosphere’, in Proceedings of the 3{rd} USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, USA, March 21–24 2005, p. 208.

  77. Rumpel, C., Alexis, M., Chabbi, A., Chaplot, V., Rasse, D.P., Valentin, C. and Mariott, A.: 2005, ‘Black carbon contribution to soil organic matter decomposition in tropical sloping land under slash-and-burn agriculture’, Geoderma, in press, DOI: 10.1016/j.geoderma.2005.01.007.

  78. Saito, M. and Marumoto. T.: 2002, ‘Inoculation with arbuscular mycorrhizal fungi: The status quo in Japan and the future prospects’, Plant and Soil244, 273–279.

    Article  Google Scholar 

  79. Schlesinger, W.H. and Lichter, J.: 1999, ‘Limited carbon storage in soil and litter of experimental forest plots under incerased atmospheric CO2’, Nature411, 466–469.

    Article  Google Scholar 

  80. Schlesinger, W.H.: 1990, ‘Evidence from chronosequence studies for a low carbon storage potential of soils’, Nature348, 232–234.

    Article  Google Scholar 

  81. Schlesinger, W.H.: 1999, ‘Carbon and agriculture – Carbon sequestration in soils’, Science284, 2095.

    Article  Google Scholar 

  82. Schmidt, M.W.I. and Noack, A.G.: 2000, ‘Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges’, Global Biogeochemical Cycles14, 777–794.

    Article  Google Scholar 

  83. Scholes, R.J. and Noble, I.R.: 2001, ‘Climate change – storing carbon on land’, Science294, 1012–1013.

    Article  Google Scholar 

  84. Seifritz, W.: 1993, ‘Should we store carbon in charcoal?’, International Journal of Hydrogen Energy18, 405–407.

    Article  Google Scholar 

  85. Sensöz, S. and Can, M.: 2002, ‘Pyrolysis of pine (Pinus bruta Ten.) chips: 1. effects of pyrolysis temperature and heating rate on the product yields’, Energy Sources24, 347–354.

    Article  Google Scholar 

  86. Shindo, H.: 1991, ‘Elementary composition, humus composition, and decomposition in soil of charred grassland plants’, Soil Science and Plant Nutrition37, 651–657.

    Article  Google Scholar 

  87. Shinogi, Y., Yoshida, H., Koizumi, T., Yamaoka, M. and Saito, T.: 2003, ‘Basic characteristics of low-temperature carbon products from waste sludge’, Advances in Environmental Research7, 661–665.

    Article  Google Scholar 

  88. Shneour, E.A.: 1966, ‘Oxidation of graphite carbon in certain soils’, Science151, 991–992.

    Article  Google Scholar 

  89. Skjemstad, J.O., Reicosky, D.C., Wilts, A.R. and McGowan, J.A.: 2002, ‘Charcoal carbon in U.S. agricultural soils’, Soil Science Society of America Journal66, 1249–1255.

    Article  Google Scholar 

  90. Smith, P., Goulding, K.W.T., Smith K.A., Powlson D.S., Smith J.U., Falloon P. and Coleman K.: 2001. ‘Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential’, Nutrient Cycling in Agroecosystems60, 237–252.

    Article  Google Scholar 

  91. Sombroek, W., Nachtergaele, F.O. and Hebel, A.: 1993, ‘Amounts, dynamics and sequestering of carbon in tropical and subtropical soils’, Ambio22, 417–426.

    Google Scholar 

  92. Sombroek, W., Ruivo, M.L., Fearnside, P.M., Glaser, B. and Lehmann J.: 2003, ‘Amazonian Dark Earths as carbon stores and sinks’, in J. Lehmann, D.C. Kern, B. Glaser and W.I. Woods (eds.), Amazonian Dark Earths: Origin, Properties, Management, (pp. 125–139) Dordrecht, Kluwer Academic Publishers.

    Google Scholar 

  93. UN/ECE: 1995, Agricultural Statistics; Handbook; Geneva, Switzerland, United Nations Economic Commission for Europe.

  94. UNDP: 2004, World Energy Assessment; ed. J. Goldemberg and T. B. Johansson, New York, NY, UNDP.

  95. US Interagency Task Force on Tropical Forests: 1980, The World's Tropical Forests: A Policy, Strategy and Program for the United States, Dept. of State Publ. 9117: Washington, DC.

  96. Volk, T.A., Verwijst, T., Tharakan, P.J., Abrahamson, L.P. and White, E.H.: 2004, ‘Growing fuel: A sustainability assessment of willow biomass crops’, Frontiers in Ecology and the Environment2, 411–418.

    Article  Google Scholar 

  97. Walsh, M.E., Perlack, R.L., Turhollow, A., Ugarte, D.T., Becker, D.A., Graham, R.L., Slinksy, S.E. and Ray, D.E.: 1999, Biomass Feedstock Availability in the United States: 1999 State Level Analysis, Oak Ridge National Laboratory: Oak Ridge, TN.

  98. Weisbach, C., Tiessen, H. and Jimenez-Osornio, J.J.: 2002, ‘Soil fertility during shifting cultivation in the tropical Karst soils of Yucatan’, Agronomie22, 253–263.

    Article  Google Scholar 

  99. West, T.O. and Marland, G.: 2002, ‘A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States’, Agriculture, Ecosystems and Environment91, 217–232.

    Article  Google Scholar 

  100. Yaman, S.: 2004, ‘Pyrolysis of biomass to produce fuels and chemical feedstocks’, Energy Conversion and Management45, 651–671.

    Article  Google Scholar 

  101. Zabaniotou, A.A.: 1999, ‘Pyrolysis of forestry biomass by-products in Greece’, Energy Sources21, 395–403.

    Article  Google Scholar 

  102. Zanzi, R., Sjöström, K. and Björnbom, E.: 2002, ‘Rapid pyrolysis of agricultural residues at high temperature’, Biomass and Bioenergy23, 357–366.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johannes Lehmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lehmann, J., Gaunt, J. & Rondon, M. Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitig Adapt Strat Glob Change 11, 403–427 (2006). https://doi.org/10.1007/s11027-005-9006-5

Download citation

Keywords

  • black carbon
  • carbon sequestration
  • charcoal
  • emissions trading
  • global warming potential
  • greenhouse gas emissions
  • soils
  • terra preta de indio