Skip to main content
Log in

Dynamical Systems Implementation of Intrinsic Sentence Meaning

  • General Article
  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

This paper proposes a model for implementation of intrinsic natural language sentence meaning in a physical language understanding system, where 'intrinsic' is understood as 'independent of meaning ascription by system-external observers'. The proposal is that intrinsic meaning can be implemented as a point attractor in the state space of a nonlinear dynamical system with feedback which is generated by temporally sequenced inputs. It is motivated by John Searle's well known (Behavioral and Brain Sciences, 3: 417–57, 1980) critique of the then-standard and currently still influential computational theory of mind (CTM), the essence of which was that CTM representations lack intrinsic meaning because that meaning is dependent on ascription by an observer. The proposed dynamical model comprises a collection of interacting artificial neural networks, and constitutes a radical simplification of the principle of compositional phrase structure which is at the heart of the current standard view of sentence semantics because it is computationally interpretable as a finite state machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

To be posted on Trolling upon acceptance.

Code Availability

To be posted on Github upon acceptance.

References

  • Adams, F., Aizawa, K. (2017). Causal theories of mental content. In: E. Zalta (ed.) Stanford encyclopedia of philosophy, (Summer 2017 Edition). Retrieved from https://plato.stanford.edu/archives/sum2017/entries/content-causal/.

  • Anderson, M. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149, 91–130.

    Article  Google Scholar 

  • Anderson, M. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–266.

    Article  Google Scholar 

  • Arbib, M. (1987). Brains, machines, and mathematics (2nd ed.). Springer.

    Book  MATH  Google Scholar 

  • Barsalou, L. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2, 716–724.

    Article  Google Scholar 

  • Barsalou, L. (2016a). On staying grounded and avoiding quixotic dead ends. Psychonomic Bulletin & Review, 23, 1122–1142.

    Article  Google Scholar 

  • Barsalou, L. (2016b). Situated conceptualization: Theory and applications. Foundations of embodied cognition: Volume 1 perceptual and emotional embodiment (pp. 11–37). Psychology Press.

    Google Scholar 

  • Barsalou, L. (2017). What does semantic tiling of the cortex tell us about semantics? Neuropsychologia, 105, 18–38.

    Article  Google Scholar 

  • Barsalou, L., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. Philosophical Transactions of the Royal Society B. https://doi.org/10.1098/rstb.2017.0144

    Article  Google Scholar 

  • Bartels, A. (2006). Defending the structural concept of representation. Theoria, 55, 7–19.

    MathSciNet  MATH  Google Scholar 

  • Binder, J. (2016). In defense of abstract conceptual representations. Psychonomic Bulletin & Review, 23, 1096–1108.

    Article  Google Scholar 

  • Binder, J., Conant, L., Humphries, C., Fernandino, L., Simons, S., Aguilar, M., & Desai, R. (2016). Toward a brain-based componential semantic representation. Cognitive Neuropsychology, 33, 130–174. https://doi.org/10.1080/02643294.2016.1147426

    Article  Google Scholar 

  • Binder, J., Desai, R., Graves, W., & Conant, L. (2009). Where Is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.

    Article  Google Scholar 

  • Binder, J., Westbury, C., McKiernan, K., Possing, E., & Medler, D. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17, 905–917.

    Article  Google Scholar 

  • Boeckx, C., & Grohmann, K. (Eds.). (2013). The Cambridge handbook of biolinguistics. Cambridge University Press.

    Google Scholar 

  • Boone, W., & Piccinini, G. (2016). The cognitive neuroscience revolution. Synthese, 193, 1509–1534.

    Article  Google Scholar 

  • Bradie, M., Harms, W. (2020). Evolutionary epistemology. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Spring 2020 Edition). Retrieved from https://plato.stanford.edu/archives/spr2020/entries/epistemology-evolutionary/.

  • Casey, M. (1996). The dynamics of discrete-time computation with application to recurrent neural networks and finite state machine extraction. Neural Computation, 8, 1135–1178.

    Article  Google Scholar 

  • Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory, 2, 113–124.

    Article  MATH  Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. Mouton.

    Book  MATH  Google Scholar 

  • Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2, 137–167.

    Article  MathSciNet  MATH  Google Scholar 

  • Chomsky, N. (1963). Formal properties of grammars. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (pp. 323–418). Wiley.

    Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. MIT Press.

    Google Scholar 

  • Chomsky, N. (2000). The architecture of language. Oxford University Press.

    Google Scholar 

  • Christiansen, M. (1992). The (non)necessity of recursion in natural language processing. In: Proceedings of the 14th Annual Conference of the Cognitive Science Society. pp. 665–670.

  • Christiansen, M., & Chater, N. (1999). Towards a connectionist model of recursion in human linguistic performance. Cognitive Science, 23, 157–205.

    Article  Google Scholar 

  • Christiansen, M., & Chater, N. (2008). Language as shaped by the brain. Behavioral and Brain Sciences, 31, 489–558.

    Article  Google Scholar 

  • Christiansen, M., & MacDonald, M. (2009). A usage-based approach to recursion in sentence processing. Language Learning, 59, 126–161.

    Article  Google Scholar 

  • Churchland, P. (2012). Plato’s camera. How the physical brain captures a landscape of abstract universals.

    Book  Google Scholar 

  • Cole, D. (2020). The Chinese room argument. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Spring 2020 Edition). Retrieved from https://plato.stanford.edu/archives/spr2020/entries/chinese-room/.

  • Conway, C., & Pisoni, D. (2008). Neurocognitive basis of implicit learning of sequential structure and its relation to language processing. Annals of the New York Academy of Sciences, 1145, 113–131.

    Article  Google Scholar 

  • De Vries, M., Christiansen, M., & Petersson, K. (2011). Learning recursion: Multiple nested and crossed dependencies. Biolinguistics, 5, 10–35.

    Article  Google Scholar 

  • De Vries, M., Monaghan, P., Knecht, S., & Zwitserlood, P. (2008). Syntactic structure and artificial grammar learning: The learnability of embedded hierarchical structures. Cognition, 107, 763–774.

    Article  Google Scholar 

  • De Vries, M., Petersson, K., Geukes, S., Zwitserlood, P., & Christiansen, M. (2012). Processing multiple non-adjacent dependencies: Evidence from sequence learning. Philosophical Transactions of the Royal Society B, 367, 2065–2076.

    Article  Google Scholar 

  • Dever, J. (2006). Compositionality. In E. Lepore & B. Smith (Eds.), The Oxford handbook of philosophy of language (pp. 633–666). Oxford University Press.

    Google Scholar 

  • Downes, S. (2018). Evolutionary psychology. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Spring 2020 Edition). Retrieved from https://plato.stanford.edu/archives/spr2020/entries/evolutionary-psychology/.

  • Fernandino, L., Binder, J., Desai, R., Pendl, S., Humphries, C., Gross, W., Conant, L., & Seidenberg, M. (2016). Concept representation reflects multimodal abstraction: A framework for embodied semantics. Cerebral Cortex, 26, 2018–2034.

    Article  Google Scholar 

  • Fitch, W., & Friederici, A. (2012). Artificial grammar meets formal language theory: An overview. Philosophical Transactions of the Royal Society B, 367, 1933–1955.

    Article  Google Scholar 

  • Fitch, W., Friederici, A., & Hagoort, P. (2012). Pattern perception and computational complexity: Introduction to the special issue. Philosophical Transactions of the Royal Society B, 367, 1925–1932.

    Article  Google Scholar 

  • Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture. Cognition, 28, 3–71.

    Article  Google Scholar 

  • Friederici, A. (2017). Language in our brain: The origins of a uniquely human capacity. MIT Press.

    Book  Google Scholar 

  • Gallistel, C. (1990). Representations in animal cognition: An introduction. Cognition, 37, 1–22.

    Article  Google Scholar 

  • Gallistel, C. (2008). Learning and representation. In J. Byrne (Ed.), Learning and memory: A comprehensive reference (pp. 227–242). Elsevier.

    Chapter  Google Scholar 

  • Gallistel, C., & King, A. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. Wiley.

    Book  Google Scholar 

  • Garagnani, M., & Pulvermüller, F. (2016). Conceptual grounding of language in action and perception: A neurocomputational model of the emergence of category specificity and semantic hubs. European Journal of Neuroscience, 43, 721–737.

    Article  Google Scholar 

  • Gärdenfors, P. (2014). Geometry of meaning. MIT Press.

    Book  MATH  Google Scholar 

  • Gazzaniga, M., Ivry, R., & Mangun, G. (2019). Cognitive neuroscience: The biology of the mind. Norton.

    Google Scholar 

  • Geeraerts, D., & Cuyckens, H. (2012). Introducing cognitive linguistics. Oxford University Press.

    Google Scholar 

  • Gładziejewski, P., & Miłkowski, M. (2017). Structural representations: Causally relevant and different from detectors. Biology and Philosophy, 32, 337–355.

    Article  Google Scholar 

  • Goodfellow, I., & Bengio, Y. (2017). Deep learning. MIT Press.

    MATH  Google Scholar 

  • Haykin, S. (2008). Neural networks: A comprehensive foundation. Prentice Hall.

    MATH  Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735–1780.

    Article  Google Scholar 

  • Hopcroft, J., Motwani, R., & Ullman, J. (2000). Introduction to automata theory, languages, and computation. Addison-Wesley.

    MATH  Google Scholar 

  • Isaac, A. (2013). Objective similarity and mental representation. Australasian Journal of Philosophy, 91, 683–704.

    Article  Google Scholar 

  • Jackendoff, R. (2002). Foundations of language: Brain, meaning, grammar. Oxford University Press.

    Book  Google Scholar 

  • Jackendoff, R. (2012). A user’s guide to thought and meaning. Oxford University Press.

    Google Scholar 

  • Jacob, P. (2019). Intentionality. In: E. Zalta (ed.) Stanford encyclopedia of philosophy, (Spring 2019 Edition). Retrieved from https://plato.stanford.edu/archives/spr2019/entries/intentionality/.

  • Jäger, G., & Rogers, J. (2012). Formal language theory: Refining the Chomsky hierarchy. Philosophical Transactions of the Royal Society B, 367, 1956–1970.

    Article  Google Scholar 

  • Johnson, K. (2004). Gold’s theorem and cognitive science. Philosophy of Science, 70, 571–592.

    Article  MathSciNet  Google Scholar 

  • Karlsson, F. (2007). Constraints on multiple initial embedding of clauses. International Journal of Corpus Linguistics, 12, 107–118.

    Article  Google Scholar 

  • Kemmerer, D. (2015). Cognitive neuroscience of language. Psychology Press.

    Google Scholar 

  • Lange, S., Zeugmann, T., & Zilles, S. (2008). Learning indexed families of recursive languages from positive data: A survey. Theoretical Computer Science, 397, 194–232.

    Article  MathSciNet  MATH  Google Scholar 

  • Lau, J., Deutsch, M. (2014). Externalism About Mental Content. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Fall 2019 Edition). Retrieved from https://plato.stanford.edu/archives/fall2019/entries/content-externalism/.

  • Macleod, C. (2016). John Stuart mill. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Summer 2020 Edition). Retrieved from https://plato.stanford.edu/archives/sum2020/entries/mill/.

  • Matheson, H., & Barsalou, L. (2018). Embodiment and grounding in cognitive neuroscience. In J. Wixted (Ed.), The Stevens’ handbook of experimental psychology and cognitive neuroscience (4th ed.). Wiley.

    Google Scholar 

  • McLaughlin, B., Bennett, K. (2018). Supervenience. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Winter 2018 Edition). Retrieved from https://plato.stanford.edu/archives/win2018/entries/supervenience/.

  • Miller, G., & Chomsky, N. (1963). Finitary models of language users. In D. Luce, R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology 2 (pp. 419–491). Wiley.

    Google Scholar 

  • Millikan, R. (2004). Varieties of meaning. MIT Press.

    Book  Google Scholar 

  • Moisl, H. (2020). Intrinsic intentionality and linguistic meaning: An historical outline. In E. Kelih & R. Köhler (Eds.), Words and numbers. In memory of Peter Grzybe 1957–2019 (pp. 148–166). RAM-Verlag.

    Google Scholar 

  • Morgan, A., & Piccinini, G. (2018). Towards a cognitive neuroscience of intentionality. Minds and Machines, 28, 119–139.

    Article  Google Scholar 

  • Neander, K. (2017). A mark of the mental: In defense of informational teleosemantics. MIT Press.

    Book  Google Scholar 

  • O'Connor, T. (2020). Emergent properties. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Fall 2020 Edition). Retrieved from https://plato.stanford.edu/archives/fall2020/entries/properties-emergent/.

  • Oppy, G., Dowe, D. (2016). The turing test. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Spring 2019 Edition). Retrieved from https://plato.stanford.edu/archives/spr2019/entries/turing-test/.

  • Papineau, D. (2020). Naturalism. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Summer 2020 Edition). Retrieved from https://plato.stanford.edu/archives/sum2020/entries/naturalism/.

  • Patton, L. (2018). Hermann von helmholtz. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Winter 2018 Edition). Retrieved from https://plato.stanford.edu/archives/win2018/entries/hermann-helmholtz/.

  • Petersson, K. (2005). On the relevance of the neurobiological analogue of the finite-state architecture. Neurocomputing, 65–66, 825–832.

    Article  Google Scholar 

  • Petersson, K., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120, 83–95.

    Article  Google Scholar 

  • Petersson, K., Grenholm, P., & Forkstam, C. (2005). Artificial grammar learning and neural networks. Proceeding of the Cognitive Science Society, 2005, 1726–1731.

    Google Scholar 

  • Petersson, K., & Hagoort, P. (2012). The neurobiology of syntax: Beyond string sets. Philosophical Transactions of the Royal Society B, 367, 1971–1983.

    Article  Google Scholar 

  • Piccinini, G. (2009). Computationalism in the philosophy of mind. Philosophy Compass., 4, 515–532.

    Article  Google Scholar 

  • Piccinini, G. (2016). The computational theory of cognition. In V. Müller (Ed.), Fundamental issues in artificial intelligence. Springer.

    Google Scholar 

  • Piccinini, G., & Maley (2021). Computation in physical systems. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Summer 2021 Edition). Retrieved from https://plato.stanford.edu/archives/sum2021/entries/computation-physicalsystems/.

  • Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 37, 453–488.

    Article  Google Scholar 

  • Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183, 283–311.

    Article  Google Scholar 

  • Piccinini, G., & Scarantino, A. (2010). Computation vs. information processing: Why their difference matters to cognitive science. Studies in the History and Philosophy of Science, 41, 237–246.

    Article  Google Scholar 

  • Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37, 1–38.

    Article  Google Scholar 

  • Piccinini, G., & Shagrir, O. (2014). Foundations of computational neuroscience. Current Opinion in Neurobiology, 25, 25–30.

    Article  Google Scholar 

  • Plebe, A., & de la Cruz, V. (2016). Neurosemantics. Springer.

    Book  Google Scholar 

  • Pojman, P. (2019). Ernst mach. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Spring 2019 Edition). Retrieved from https://plato.stanford.edu/archives/spr2019/entries/ernst-mach/.

  • Pullum, G., & Scholz, B. (2010). Recursion and the infinitude claim. In H. van der Hulst (Ed.), Recursion and human language (pp. 111–138). De Gruyter Mouton.

    Chapter  Google Scholar 

  • Pulvermũller, F. (2012). Meaning and the brain: The neurosemantics of referential, interactive, and combinatorial knowledge. Journal of Neurolinguistics, 25, 423–459.

    Article  Google Scholar 

  • Pulvermũller, F. (2013). How neurons make meaning: Brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences, 17, 458–470.

    Article  Google Scholar 

  • Ramsey, W. (2019). Eliminative materialism. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Summer 2020 Edition). Retrieved from https://plato.stanford.edu/archives/sum2020/entries/materialism-eliminative/.

  • Rescorla, M. (2020). The computational theory of mind. In: E. Zalta (ed.)Stanford encyclopedia of philosophy (Spring 2020 Edition). Retrieved from https://plato.stanford.edu/archives/spr2020/entries/computational-mind/.

  • Rescorla, M. (2009). Cognitive maps and the language of thought. British Journal for the Philosophy of Science, 60, 377–407.

    Article  Google Scholar 

  • van Riel, R., van Gulick, R. (2019). Scientific reduction. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Spring 2019 Edition). Retrieved from https://plato.stanford.edu/archives/spr2019/entries/scientific-reduction/

  • Rupert, R. (2008). Causal theories of mental content. Philosophy Compass, 3, 353–380.

    Article  Google Scholar 

  • Ryder, D. (2004). SINBAD neurosemantics: A theory of mental representation. Mind and Language, 19, 211–240.

    Article  Google Scholar 

  • Rysiew, P. (2020). Naturalism in epistemology. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Fall 2020 Edition). Retrieved from https://plato.stanford.edu/archives/fall2020/entries/epistemology-naturalized/.

  • Scholz, B., Pelletier, F., Pullum, G. (2015). Philosophy of linguistics. In: E. Zalta (ed.) Stanford encyclopedia of philosophy, (Winter 2016 Edition). Retrieved from https://plato.stanford.edu/archives/win2016/entries/linguistics/.

  • Searle, J. (1980). Minds, brains and programs. Behavioral and Brain Sciences, 3, 417–457.

    Article  Google Scholar 

  • Shagrir, O. (2018). The Brain as an input–output model of the world. Minds and Machines, 28, 53–75.

    Article  Google Scholar 

  • Shea, N. (2007). Consumers need information: Supplementing teleosemantics with an input condition. Philosophy and Phenomenological Research, 75, 404–435.

    Article  Google Scholar 

  • Shea, N. (2014). Exploitable isomorphism and structural representation. Proceedings of the Aristotelian Society, 114, 123–144.

    Article  Google Scholar 

  • Shea, N. (2018). Representation in cognitive science. Oxford University Press.

    Book  Google Scholar 

  • Siegelmann, H. (1999). Neural networks and analog computation: Beyond the Turing limit. Birkhäuser.

    Book  MATH  Google Scholar 

  • Siegelmann, H., & Sontag, E. (1995). On the computational power of neural nets. Journal of Computer and System Sciences, 50, 132–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Sipser, M. (2012). Introduction to the theory of computation, international edition. Thomson.

    Google Scholar 

  • Smirnov, D. (2002) Homomorphism. In: Encyclopedia of mathematics. http://encyclopediaofmath.org/index.php?title=Homomorphism&oldid=47265.

  • Speaks, J. (2021). Theories of meaning. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Spring 2021 Edition). Retrieved from https://plato.stanford.edu/archives/spr2021/entries/meaning/.

  • Stoljar, D. (2015). Physicalism. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Winter 2017 Edition). Retrieved from https://plato.stanford.edu/archives/win2017/entries/physicalism/

  • Szabó, Z. (2020). Compositionality. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Fall 2020 Edition). Retrieved from https://plato.stanford.edu/archives/fall2020/entries/compositionality/

  • Tangirala, A. (2014). Principles of system identification: Theory and practice. CRC Press.

    Google Scholar 

  • Thomson, E., & Piccinini, G. (2018). Neural representations observed. Minds and Machines, 28, 191–235.

    Article  Google Scholar 

  • Tomasello, R., Garagnani, M., Wennekers, T., & Pulvermüller, F. (2017). Brain connections of words, perceptions and actions: A neurobiological model of spatio-temporal semantic activation in the human cortex. Neuropsychologia, 98, 111–129.

    Article  Google Scholar 

  • Wilson, R., Foglia, L. (2015). Embodied cognition. In: E. Zalta (ed.) Stanford encyclopedia of philosophy (Spring 2017 Edition). Retrieved from https://plato.stanford.edu/archives/spr2017/entries/embodied-cognition/

  • Wilson-Mendenhall, C., Simmons, W., Martin, A., & Barsalou, L. (2013). Contextual processing of abstract concepts reveals neural representations of nonlinguistic semantic content. Journal of Cognitive Neuroscience, 25, 920–935.

    Article  Google Scholar 

Download references

Funding

Self-funded.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Hermann Moisl.

Ethics declarations

Conflict of interest

Not applicable.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moisl, H. Dynamical Systems Implementation of Intrinsic Sentence Meaning. Minds & Machines 32, 627–653 (2022). https://doi.org/10.1007/s11023-022-09590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-022-09590-1

Keywords

Navigation