Skip to main content

Ethical Implications of Closed Loop Brain Device: 10-Year Review

Abstract

Closed Loop medical devices such as Closed Loop Deep Brain Stimulation (CL-DBS) and Brain Computer Interface (BCI) are some of the emerging neurotechnologies. New generations of implantable brain–computer interfaces have recently gained success in human clinical trials. These implants detect specific neuronal patterns and provide the subject with information to respond to these patterns. Further, Closed Loop brain devices give control to the subject so that he can respond and decide on a therapeutic goal. Although the implants have improved subjects’ quality of life, their use has raised varied ethical concerns. The aim of this study is to provide an overview of the ethical implications specific to the therapeutic goals of closed loop brain implants. The authors analyze the related work qualitatively and quantitatively so as to help readers in understanding the various ethical implications of closed loop brain implants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Agid, Y., Schüpbach, M., Gargiulo, M., Mallet, L., Houeto, J. L., Behar, C., et al. (2006). Neurosurgery in Parkinson’s disease: The doctor is happy, the patient less so? Parkinson’s disease and related disorders (pp. 409–414). Vienna: Springer.

    Google Scholar 

  2. Akcakaya, M., Peters, B., Moghadamfalahi, M., Mooney, A. R., Orhan, U., Oken, B., et al. (2014). Noninvasive brain–computer interfaces for augmentative and alternative communication. IEEE Reviews in Biomedical Engineering,7, 31–49.

    Google Scholar 

  3. Allison, B.Z. (2011). Future BNCI: A roadmap for future directions in Brain Neuronal Computer Interaction Research. Retrieved February 2014 from http://futurebnci.org/images/stories/Future_BNCI_Roadmap.pdf.

  4. Barclay, L. (2000). Autonomy and the social self.

  5. Baylis, F. (2013). “I am who I am”: On the perceived threats to personal identity from deep brain stimulation. Neuroethics,6(3), 513–526.

    Google Scholar 

  6. Beauchamp, T. & Childress, J. F. (2009). Principles of Biomedical Ethics, 5.

  7. Birbaumer, N., Gallegos-Ayala, G., Wildgruber, M., Silvoni, S., & Soekadar, S. R. (2014). Direct brain control and communication in paralysis. Brain Topography,27(1), 4–11.

    Google Scholar 

  8. Bonaci, T., Calo, R., & Chizeck, H. J. (2015). App stores for the brain: Privacy and security in brain–computer interfaces. IEEE Technology and Society Magazine,34(2), 32–39.

    Google Scholar 

  9. Brock, D. W. (1993). Life and death: Philosophical essays in biomedical ethics. Cambridge: Cambridge University Press.

    Google Scholar 

  10. Brown, T., Thompson, M. C., Herron, J., Ko, A., Chizeck, H., & Goering, S. (2016). Controlling our brains—A case study on the implications of brain–computer interface-triggered deep brain stimulation for essential tremor. Brain-Computer Interfaces,3(4), 165–170.

    Google Scholar 

  11. Burwell, S., Sample, M., & Racine, E. (2017). Ethical aspects of brain computer interfaces: A scoping review. BMC Medical Ethics,18(1), 60.

    Google Scholar 

  12. Center, E. (2011). Automatic adaptation of neurostimulation therapy in response to changes in patient position: Results of the Posture Responsive Spinal Cord Stimulation (PRS) Research Study. Pain Physician,14, 407–417.

    Google Scholar 

  13. Clausen, J. (2009). Man, machine and in between. Nature,457(7233), 1080.

    Google Scholar 

  14. Clausen, J. (2011). Conceptual and ethical issues with brain–hardware interfaces. Current Opinion in Psychiatry,24(6), 495–501.

    Google Scholar 

  15. Denning, P. J. (2009). Beyond computational thinking. Communications of the ACM,52(6), 28–30.

    Google Scholar 

  16. Erickson-Davis, C. O. R. D. E. L. I. A. (2012). Ethical concerns regarding commercialization of deep brain stimulation for obsessive compulsive disorder. Bioethics,26(8), 440–446.

    Google Scholar 

  17. Farah, M. J. (2005). Neuroethics: The practical and the philosophical. Trends in Cognitive Sciences,9(1), 34–40.

    Google Scholar 

  18. Fenton, A., & Alpert, S. (2008). Extending our view on using BCIs for locked-in syndrome. Neuroethics,1(2), 119–132.

    Google Scholar 

  19. Fins, J. J., Schlaepfer, T. E., Nuttin, B., Kubu, C. S., Galert, T., Sturm, V., et al. (2011). Ethical guidance for the management of conflicts of interest for researchers, engineers and clinicians engaged in the development of therapeutic deep brain stimulation. Journal of Neural Engineering,8(3), 033001.

    Google Scholar 

  20. Gardner, J. & Warren, N. (2018). Learning from deep brain stimulation: the fallacy of techno-solutionism and the need for ‘regimes of care’. Medicine, Health Care and Philosophy, 1–12.

  21. Gilbert, F. (2015). A threat to autonomy? The intrusion of predictive brain implants. AJOB Neuroscience,6, 4.

    Google Scholar 

  22. Gilbert, F., Cook, M., O’Brien, T., & Illes, J. (2019). Embodiment and estrangement: Results from a first-in-human “intelligent BCI” trial. Science and Engineering Ethics,25(1), 83–96.

    Google Scholar 

  23. Gilbert, F., Viaña, J.N.M. & Ineichen, C. (2018). Deflating the “DBS causes personality changes” bubble. Neuroethics. 1–17.

  24. Glannon. (2009). Stimulating brains, altering minds. Journal of Medical Ethics, 35(5).

  25. Glannon, W. (2014). Neuromodulation, agency and autonomy. Brain Topography,27(1), 46–54.

    Google Scholar 

  26. Glannon, W. (2016). Ethical issues in neuroprosthetics. Journal of Neural Engineering,13(2), 021002.

    Google Scholar 

  27. Glannon, W., & Ineichen, C. (2016). Philosophical aspects of closed-loop neuroscience. In Closed loop neuroscience (pp. 259–270).

  28. Goering, S., Klein, E., Dougherty, D. D., & Widge, A. S. (2017). Staying in the loop: Relational agency and identity in next-generation DBS for psychiatry. AJOB Neuroscience,8(2), 59–70.

    Google Scholar 

  29. Haggard, P. (2017). Sense of agency in the human brain. Nature Reviews Neuroscience,18(4), 196.

    Google Scholar 

  30. Haselager, P., Vlek, R., Hill, J., & Nijboer, F. (2009). A note on ethical aspects of BCI. Neural Networks,22(9), 1352–1357.

    Google Scholar 

  31. Kellmeyer, P., Cochrane, T., M€uller, O., et al. (2016). The effects of closed-loop medical devices on the autonomy and accountability of persons and systems. Cambridge Quarterly of Healthcare Ethics,25(4), 623–633.

    Google Scholar 

  32. Kernan, W. N., Ovbiagele, B., Black, H. R., Bravata, D. M., Chimowitz, M. I., Ezekowitz, M. D., et al. (2014). Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke,45(7), 2160–2236.

    Google Scholar 

  33. Klein, E. (2016). Informed consent in implantable BCI research: Identifying risks and exploring meaning. Science and Engineering Ethics,22(5), 1299–1317.

    Google Scholar 

  34. Klein, E., Brown, T., Sample, M., Truitt, A. R., & Goering, S. (2015). Engineering the brain: ethical issues and the introduction of neural devices. Hastings Center Report,45(6), 26–35.

    Google Scholar 

  35. Klein, E., Goering, S., Gagne, J., Shea, C. V., Franklin, R., Zorowitz, S., et al. (2016). Brain–computer interface-based control of closed-loop brain stimulation: Attitudes and ethical considerations. Brain-Computer Interfaces,3(3), 140–148.

    Google Scholar 

  36. Klein, E., & Ojemann, J. (2016). Informed consent in implantable BCI research: Identification of research risks and recommendations for development of best practices. Journal of Neural Engineering,13(4), 043001.

    Google Scholar 

  37. Kotchetkov, I. S., Hwang, B. Y., Appelboom, G., Kellner, C. P., & Connolly, E. S. (2010). Brain–computer interfaces: Military, neurosurgical, and ethical perspective. Neurosurgical Focus,28(5), E25.

    Google Scholar 

  38. Lavazza, A. (2018). Freedom of thought and mental integrity: The moral requirements for any neural prosthesis. Frontiers in Neuroscience,12, 82.

    Google Scholar 

  39. Lee, K.Y. & Jang, D. (2013). February. Ethical and social issues behind brain–computer interface. In 2013 International Winter Workshop on Brain-Computer Interface (BCI) (pp. 72–75). New York: IEEE.

  40. Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., et al. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology,74(3), 449–457.

    Google Scholar 

  41. Mastroianni, A. C., Faden, R., & Federman, D. (Eds.). (1994). Women and health research: Ethical and legal issues of including women in clinical studies (Vol. 1). Washington, DC: National Academies Press.

    Google Scholar 

  42. McAdams, D. P., & McLean, K. C. (2013). Narrative identity. Current directions in psychological science,22(3), 233–238.

    Google Scholar 

  43. McCullagh, P.J., Ware, M., Mulvenna, M., Lightbody, G., Nugent, C.D., & McAllister, H.G. (2010). Can brain computer interfaces become practical assistive devices in the community?

  44. Mele, A. R. (2001). Autonomous agents: From self-control to autonomy. Oxford: Oxford University Press on Demand.

    Google Scholar 

  45. Morrell, M. J. (2011). Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology,77(13), 1295–1304.

    Google Scholar 

  46. Morrell, M. J., & Halpern, C. (2016). Responsive direct brain stimulation for epilepsy. Neurosurgery Clinics,27(1), 111–121.

    Google Scholar 

  47. Müller, O., & Rotter, S. (2017). Neurotechnology: Current developments and ethical issues. Frontiers in Systems Neuroscience,11, 93.

    Google Scholar 

  48. Nijboer, F., Clausen, J., Allison, B. Z., & Haselager, P. (2013). The asilomar survey: Stakeholders’ opinions on ethical issues related to brain–computer interfacing. Neuroethics,6(3), 541–578.

    Google Scholar 

  49. Osorio, I., Frei, M. G., Manly, B. F., Sunderam, S., Bhavaraju, N. C., & Wilkinson, S. B. (2001). An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short-term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy. Journal of Clinical Neurophysiology,18(6), 533–544.

    Google Scholar 

  50. Parastarfeizabadi, M., & Kouzani, A. Z. (2017). Advances in closed-loop deep brain stimulation devices. Journal of Neuroengineering and Rehabilitation,14(1), 79.

    Google Scholar 

  51. Patuzzo, S., & Manganotti, P. (2014). Deep brain stimulation in persistent vegetative states: ethical issues governing decision making. Behavioural Neurology, 2014.

  52. Rabins, P., Appleby, B. S., Brandt, J., DeLong, M. R., Dunn, L. B., Gabriëls, L., et al. (2009). Scientific and ethical issues related to deep brain stimulation for disorders of mood, behavior, and thought. Archives of General Psychiatry,66(9), 931–937.

    Google Scholar 

  53. Rahman, M. A., Khan, A. H., Ahmed, T., & Sajjad, M. M. (2013). Design, analysis and implementation of a robotic arm—the animator. American Journal of Engineering Research (AJER),2(10), 298–307.

    Google Scholar 

  54. Santos, F. J., Costa, R. M., & Tecuapetla, F. (2011). Stimulation on demand: Closing the loop on deep brain stimulation. Neuron,72(2), 197–198.

    Google Scholar 

  55. Schechtman, M. (2009). Getting our stories straight: Self-narrative and personal identity.

  56. Schermer, M. (2010). Philosophical reflections on narrative and deep brain stimulation. Journal of Clinical Ethics,21(2), 133–139.

    Google Scholar 

  57. Schermer, M. (2011). Ethical issues in deep brain stimulation. Frontiers in Integrative Neuroscience,5, 17.

    Google Scholar 

  58. Schlaepfer, T. E., & Fins, J. J. (2010). Deep brain stimulation and the neuroethics of responsible publishing: When one is not enough. JAMA,303(8), 775–776.

    Google Scholar 

  59. Tamburrini, G. (2009). Brain to computer communication: Ethical perspectives on interaction models. Neuroethics,2(3), 137–149.

    Google Scholar 

  60. Vlek, R. J., Steines, D., Szibbo, D., Kübler, A., Schneider, M. J., Haselager, P., et al. (2012). Ethical issues in brain–computer interface research, development, and dissemination. Journal of Neurologic Physical Therapy,36(2), 94–99.

    Google Scholar 

  61. Vogeley, K., & Gallagher, S. (2011). Self in the brain (p. 111). na.

  62. Ward, M. P., & Irazoqui, P. P. (2010). Evolving refractory major depressive disorder diagnostic and treatment paradigms: Toward closed-loop therapeutics. Frontiers in Neuroengineering,3, 7.

    Google Scholar 

  63. Widge, A. S., Dougherty, D. D., & Moritz, C. T. (2014). Affective brain–computer interfaces as enabling technology for responsive psychiatric stimulation. Brain-Computer Interfaces,1(2), 126–136.

    Google Scholar 

  64. Witt, K., Kuhn, J., Timmermann, L., Zurowski, M., & Woopen, C. (2013). Deep brain stimulation and the search for identity. Neuroethics,6(3), 499–511.

    Google Scholar 

  65. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology,113(6), 767–791.

    Google Scholar 

  66. Wolpe, P. R. (2007). Ethical and social challenges of brain–computer interfaces. AMA Journal of Ethics,9(2), 128–131.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Swati Aggarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, S., Chugh, N. Ethical Implications of Closed Loop Brain Device: 10-Year Review. Minds & Machines 30, 145–170 (2020). https://doi.org/10.1007/s11023-020-09518-7

Download citation

Keywords

  • Closed Loop Brain Implants
  • Deep Brain Stimulation (DBS)
  • Brain Computer Interfaces (BCI)
  • Ethical implications