Minds and Machines

, Volume 28, Issue 3, pp 491–513 | Cite as

Does Kripke’s Argument Against Functionalism Undermine the Standard View of What Computers Are?

  • Jeff BuechnerEmail author


Kripke’s argument against functionalism extended to physical computers poses a deep philosophical problem (not previously addressed in the literature) for understanding the standard view of what computers are. The problem puts into jeopardy the definition in the standard view that computers are physical machines for performing physical computations. Indeed, it is entirely possible that, unless this philosophical problem is resolved, we will never have a good understanding of computers and may never know just what they are.


Physical computation Computer Functionalism Physical realization Underdetermination argument Triviality argument Weak and strong skepticism Physical computation relativism 


  1. Aho, A., Hopcroft, J., & Ullman, J. (1982). Data structures and algorithms. Boston: Addison-Wesley.zbMATHGoogle Scholar
  2. Buechner, J. (2008). Gödel, Putnam, and functionalism. Cambridge: MIT Press.zbMATHGoogle Scholar
  3. Buechner, J. (2011). Not even computing machines can follow rules: Kripke’s critique of functionalism. In A. Berger (Ed.), Saul Kripke. Cambridge: Cambridge University Press.Google Scholar
  4. Davis, P., & Cerutti, E. (1969). Formac meets Pappus: Some observations on elementary analytic geometry by computer. American Mathematical Monthly, 76, 895–905.MathSciNetzbMATHGoogle Scholar
  5. Dean, W. (2007). What algorithms could not be. Ph.D. dissertation. Rutgers University.Google Scholar
  6. Green, R. (2011). Should we retire Derek Parfit? Hastings Center Report, 40, 3.CrossRefGoogle Scholar
  7. Haken, W., & Appel, K. (1977). Every planar map is four colorable. Illinois Journal of Mathematics. 84, Parts I and II, Supplements I and II.Google Scholar
  8. Hennessy, J., & Patterson, D. (1994). Computer organization and design: The hardware/software interface. Burlington: Morgan-Kaufman.zbMATHGoogle Scholar
  9. Kripke, S. (1982). Wittgenstein on rules and private language. Cambridge: Harvard University Press.Google Scholar
  10. McCune, W. (1997). Solution of the Robbins problem. Journal of Automated Reasoning, 19, 263–276.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Parfit, D. (1984). Reasons and persons. New York: Oxford University Press.Google Scholar
  12. Piccinini, G. (2015). Physical computation. New York: Oxford University Press.CrossRefzbMATHGoogle Scholar
  13. Putnam, H. (1981). Reason, truth, and history (p. 122). New York: Cambridge University Press.CrossRefGoogle Scholar
  14. Scott, D., & Strachey, C. (1971). Toward a mathematical semantics for computer languages. In J. Fox (Ed.), Proceedings of the symposium on computers and automata (pp. 19–46). Brooklyn: Polytechnic Press.Google Scholar
  15. Sedgewick, R., & Wayne, K. (2017). Computer science: An interdisciplinary approach. London: Pearson.Google Scholar
  16. Stabler, E. (1987). Kripke on functionalism and finite automata. Synthese, 70, 1–22.CrossRefGoogle Scholar
  17. Teller, P. (1980). Computer proof. Journal of Philosophy, 77, 797–803.CrossRefGoogle Scholar
  18. Turing, A. (1936–1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.Google Scholar
  19. vanBenthem, J. (1995). Logic and the flow of information. In D. Prawitz (Ed.), Logic, methodology, and philosophy of science IX (pp. 693–724). Amsterdam: Elsevier.Google Scholar
  20. Wittgenstein, L. (2009). Philosophical investigations (4th ed.). New York: Wiley.zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhilosophyRutgers University-NewarkNewarkUSA
  2. 2.The Saul Kripke CenterCUNY, The Graduate CenterNew YorkUSA

Personalised recommendations