Advertisement

Minds and Machines

, Volume 28, Issue 3, pp 385–426 | Cite as

What is a Computer? A Survey

  • William J. Rapaport
Article
  • 182 Downloads

Abstract

A critical survey of some attempts to define ‘computer’, beginning with some informal ones (from reference books, and definitions due to H. Simon, A.L. Samuel, and M. Davis), then critically evaluating those of three philosophers (J.R. Searle, P.J. Hayes, and G. Piccinini), and concluding with an examination of whether the brain and the universe are computers.

Keywords

Computers Computation Herbert Simon Arthur Samuel Martin Davis John Searle Patrick Hayes Gualtiero Piccinini Turing machines 

References

  1. Aaronson, S. (2011, December 9). Quantum computing promises new insights, not just supermachines. New York Times, D5. http://www.nytimes.com/2011/12/06/science/scott-aaronson-quantum-computing-promises-new-insights.html.
  2. Adleman, L. M. (1998). Computing with DNA. Scientific American, 54–61. http://www.usc.edu/dept/molecular-science/papers/fp-sciam98.pdf.
  3. Aho, A. V. (2011, January). What is computation? Computation and computational thinking. Ubiquity, Article 1. http://ubiquity.acm.org/article.cfm?id=1922682.
  4. Aizawa, K. (2010). Computation in cognitive science: It is not all about Turing-equivalent computation. Studies in History and Philosophy of Science, 41(3), 227–236. Reply to Piccinini (2004).Google Scholar
  5. Anderson, D. L. (2006). The nature of computers. The Mind Project. http://www.mind.ilstu.edu/curriculum/modOverview.php?modGUI=196.
  6. Angier, N. (2010, February 2). Abtract thoughts? The body takes them literally. New York Times/Science Times, D2. http://www.nytimes.com/2010/02/02/science/02angier.html.
  7. Bacon, D. (2010, December). What is computation? Computation and fundamental physics. Ubiquity 2010(December). Article 4, http://ubiquity.acm.org/article.cfm?id=1920826.
  8. Bader, R. M. (2013). Towards a hyperintensional theory of intrinsicality. Journal of Philosophy, 110(10), 525–563.Google Scholar
  9. Ballard, D. H. (1997). An introduction to natural computation. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  10. Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74(1), 47–73.MathSciNetGoogle Scholar
  11. Biermann, A. (1990). Great ideas in computer science: A gentle introduction. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  12. Blum, L., Shub, M., & Smale, S. (1989). On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions, and universal machines. Bulletin of the American Mathematical Society, 21(1), 1–46.MathSciNetzbMATHGoogle Scholar
  13. Borbely, R. (2005). Letter to the editor. Scientific American, 12, 15.Google Scholar
  14. Bostrom, N. (2003). Are you living in a computer simulation? Philosophical Quarterly, 53(211), 243–255.Google Scholar
  15. Burks, A. W. (Ed.). (1970). Essays on cellular automata. Urbana, IL: University of Illinois Press.zbMATHGoogle Scholar
  16. Buzen, J. P. (2011, January). Computation, uncertainty and risk. Ubiquity, Article 5. http://ubiquity.acm.org/article.cfm?id=1936886.
  17. Care, C. (2007). Not only digital: A review of ACM’s early involvement with analog computing technology. Communications of the ACM, 50(5), 42–45.Google Scholar
  18. Carpenter, B., & Doran, R. (1977). The other Turing machine. The Computer Journal, 20(3), 269–279.MathSciNetzbMATHGoogle Scholar
  19. Chaitin, G. (2006). How real are real numbers? International Journal of Bifurcation and Chaos. http://www.cs.auckland.ac.nz/~chaitin/olympia.pdf (2006 version); http://www.umcs.maine.edu/~chaitin/wlu.html (2009 version).
  20. Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese108, 309–333. http://consc.net/papers/rock.html; Chalmers corrects “an error in my arguments” in Chalmers (2012, pp. 236–238).
  21. Chalmers, D. J. (2011). A computational foundation for the study of cognition. Journal of Cognitive Science (South Korea), 12(4), 323–357.Google Scholar
  22. Chalmers, D. J. (2012). The varieties of computation: A reply. Journal of Cognitive Science (South Korea), 13(3), 211–248.Google Scholar
  23. Chirimuuta, M., Boone, T., & DeMedonsa, M. (2014, September 19). Is your brain a computer? (video). Instant HPS. https://www.youtube.com/watch?v=-8q_UXpHsaY.
  24. Chow, S. J. (2015). Many meanings of ‘heuristic’. British Journal for the Philosophy of Science, 66, 977–1016.Google Scholar
  25. Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  26. Coffa, J. (1991). The semantic tradition from Kant to Carnap: To the Vienna Station. Cambridge: Cambridge University Press.Google Scholar
  27. Copeland, B. J. (1996). What is computation? Synthese, 108, 335–359.MathSciNetzbMATHGoogle Scholar
  28. Copeland, B. J. (1997). The broad conception of computation. American Behavioral Scientist, 40(6), 690–716.Google Scholar
  29. Copeland, B. J. (2002). Hypercomputation. Minds and Machines, 12(4), 461–502.zbMATHGoogle Scholar
  30. Copeland, B. J. (Ed.). (2004). The essential Turing. Oxford: Oxford University Press.zbMATHGoogle Scholar
  31. Copeland, B. J. (2013, August 12). What Apple and Microsoft owe to Turing. Huff[ington] Post Tech/The Blog. http://www.huffingtonpost.com/jack-copeland/what-apple-and-microsoft-_b_3742114.html.
  32. Corry, L. (2017). Turing’s pre-war analog computers: The fatherhood of the modern computer revisited. Communications of the ACM, 60(8), 50–58.Google Scholar
  33. Davis, M. D. (2000). Overheard in the park. American Scientist, 88, 366–367.Google Scholar
  34. Davis, M. D. (2004). The myth of hypercomputation. In C. Teuscher (Ed.), Alan Turing: The life and legacy of a great thinker (pp. 195–212). Berlin: Springer.Google Scholar
  35. Davis, M. D. (2006a). The Church–Turing thesis: Consensus and opposition. In A. Beckmann, U. Berger, B. Löwe, & J. Tucker (Eds.), Logical approaches to computational barriers: Second conference on computability in Europe, CiE 2006, Lecture notes in computer science (Vol. 3988, pp. 125–132), Swansea, UK, June 30–July 5, 2006. Berlin: Springer.Google Scholar
  36. Davis, M. D. (2006b). Why there is no such discipline as hypercomputation. Applied Mathematics and Computation, 178, 4–7.MathSciNetzbMATHGoogle Scholar
  37. Daylight, E. G. (2013). Towards a historical notion of “Turing—The father of computer science”. http://www.dijkstrascry.com/sites/default/files/papers/Daylightpaper91.pdf.
  38. Dennett, D. C. (2013). Intuition pumps and other tools for thinking. New York: W.W. Norton.Google Scholar
  39. Dennett, D. C. (2017). From bacteria to bach and back: The evolution of mind. New York: W.W. Norton.Google Scholar
  40. Edelman, S. (2008a). Computing the mind. New York: Oxford University Press.Google Scholar
  41. Edelman, S. (2008b). On the nature of minds; or: Truth and consequences. Journal of Experimental & Theoretical Artificial Intelligence, 20(3), 181–196.Google Scholar
  42. Egan, F. (2012). Metaphysics and computational cognitive science: Let’s not let the tail wag the dog. Journal of Cognitive Science (South Korea), 13(1), 39–49.Google Scholar
  43. Fortnow, L. (2010, December). What is computation? Ubiquity, Article 5. http://ubiquity.acm.org/article.cfm?id=1921573.
  44. Gelenbe, E. (2011, February). Natural computation. Ubiquity, Article 1. http://ubiquity.acm.org/article.cfm?id=1940722.
  45. Gigerenzer, G., & Goldstein, D. G. (1996). Mind as computer: Birth of a metaphor. Creativity Research Journal, 9(2–3), 131–144.Google Scholar
  46. Gödel, K. (perhaps about 1938). Undecidable diophantine propositions. In S. Feferman, et al. (Eds.), Collected works (Vol. III, pp. 164–175). Oxford: Oxford University Press.Google Scholar
  47. Goldin, D., Smolka, S. A., & Wegner, P. (Eds.). (2006). Interactive computation: The new paradigm. Berlin: Springer.zbMATHGoogle Scholar
  48. Goodman, N. D. (1987). Intensions, Church’s thesis, and the formalization of mathematics. Notre Dame Journal of Formal Logic, 28(4), 473–489.MathSciNetzbMATHGoogle Scholar
  49. Gopnik, A. (2009). The philosophical baby: What children’s minds tell us about truth, love, and the meaning of life. New York: Farrar, Straus and Giroux.Google Scholar
  50. Guernsey, L. (2009). Computers track the elusive metaphor. Chronicle of Higher Education, 55, A11.Google Scholar
  51. Guzdial, M., & Kay, A. (2010, May 24). The core of computer science: Alan Kay’s ‘triple whammy’. Computing Education Blog. http://computinged.wordpress.com/2010/05/24/the-core-of-computer-science-alan-kays-triple-whammy/.
  52. Haigh, T. (2013). ‘Stored program concept’ considered harmful: History and historiography. In P. Bonizzoni, V. Brattka, & B. Löwe (Eds.), CiE 2013, Lecture notes in computer science (Vol. 7921, pp. 241–251). Berlin: Springer.Google Scholar
  53. Harnish, R. M. (2002). Coda: Computation for cognitive science, or what IS a computer, anyway? In Minds, brains, computers: An historical introduction to the foundations of cognitive science (pp. 394–412). Malden, MA: Blackwell. https://www.amazon.com/Minds-Brains-Computers-Introduction-Foundations/dp/0631212604/.
  54. Hartree, D. (1949). Calculating instruments and machines. Urbana, IL: University of Illinois Press.zbMATHGoogle Scholar
  55. Hayes, B. (2007). Trains of thought. American Scientist, 95(2), 108–113.Google Scholar
  56. Hayes, P. J. (1997). What is a computer? Monist, 80(3), 389–404.Google Scholar
  57. Hedger, L. (1998). Analog computation: Everything old is new again (Vol. 21). Indiana University Research & Creative Activity. http://www.indiana.edu/~rcapub/v21n2/p24.html.
  58. Hidalgo, C. (2015). Planet hard drive. Scientific American, 313(2), 72–75.Google Scholar
  59. Hintikka, J., & Mutanen, A. (1997). An alternative concept of computability. In J. Hintikka (Ed.), Language, truth, and logic in mathematics (pp. 174–188). Dordrecht: Springer.Google Scholar
  60. Hogarth, M. (1992). Does general relativity allow an observer to view an eternity in a finite time? Foundations of Physics Letters, 5(2), 173–181.MathSciNetGoogle Scholar
  61. Holst, P. A. (2000). Analog computer. In A. Ralston, E. D. Reilly, & D. Hemmendinger (Eds.), Encyclopedia of computer science (4th ed., pp. 53–59). New York: Grove’s Dictionaries.Google Scholar
  62. Jackson, A. S. (1960). Analog computation. New York: McGraw-Hill.zbMATHGoogle Scholar
  63. Kanat-Alexander, M. (2008, October 10). What is a computer? Code Simplicity. http://www.codesimplicity.com/post/what-is-a-computer/.
  64. Kleene, S. C. (1995). Turing’s analysis of computability, and major applications of it. In R. Herken (Ed.), The universal turing machine: A half-century survey (2nd ed., pp. 15–49). Vienna: Springer.Google Scholar
  65. Kugel, P. (2002). Computing machines can’t be intelligent (… and Turing said so). Minds and Machines, 12(4), 563–579.zbMATHGoogle Scholar
  66. Lamport, L. (2011). Euclid writes an algorithm: A fairytale. International Journal of Software and Informatics 5(1–2, Part 1), 7–20.Google Scholar
  67. Langton, R., & D. Lewis (1998). Defining ‘intrinsic’. Philosophy and Phenomenological Research, 58(2), 333–345.Google Scholar
  68. Lewis, D. (1983). Extrinsic properties. Philosophical Studies, 44(2), 197–200.Google Scholar
  69. Lewis, W. (1953). Electronic computers and telephone switching. Proceedings of the Institute of Radio Engineers, 41(10), 1242–1244.Google Scholar
  70. Linker, D. (2015, July 1). No, your brain isn’t a computer. The Week. http://theweek.com/articles/563975/no-brain-isnt-computer.
  71. Lloyd, S. (2000). Ultimate physical limits to computation. Nature, 406, 1047–1054.Google Scholar
  72. Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88(23), 237901-1–237901-4.MathSciNetGoogle Scholar
  73. Lloyd, S. (2006). Programming the universe: A quantum computer scientist takes on the cosmos. New York: Alfred A. Knopf.Google Scholar
  74. Lloyd, S., & Ng, Y. J. (2004). Black hole computers. Scientific American, 291(5), 52–61.Google Scholar
  75. Marcus, G. (2015, June 28). Face it, your brain is a computer. New York Times Sunday Review, SR12. http://www.nytimes.com/2015/06/28/opinion/sunday/face-it-your-brain-is-a-computer.html.
  76. Marshall, D. (2016). The varieties of intrinsicality. Philosophy and Phenomenological Research, 92(2), 237–263.Google Scholar
  77. McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics7, 114–133. Reprinted in Warren S. McCulloch, Embodiments of mind (Cambridge, MA: MIT Press, 1965): 19–39.Google Scholar
  78. McMillan, R. (2013, July 7). The end of digital tyranny: Why the future of computing is analog. Wired. http://www.wired.com/wiredenterprise/2013/07/analogfuture/.
  79. Mitchell, M. (2011, February). What is computation? Biological computation. Ubiquity, Article 3. http://ubiquity.acm.org/article.cfm?id=1944826.
  80. Moor, J. H. (1978). Three myths of computer science. British Journal for the Philosophy of Science, 29(3), 213–222.Google Scholar
  81. Morris, G. J., & Reilly, E. D. (2000). Digital computer. In A. Ralston, E. D. Reilly, & D. Hemmendinger (Eds.), Encyclopedia of computer science (4th ed., pp. 359–545). New York: Grove’s Dictionaries.Google Scholar
  82. Naur, P. (2007). Computing versus human thinking. Communications of the ACM, 50(1), 85–94.Google Scholar
  83. O’Neill, S. (2015). The human race is a computer. New Scientist, 227(3029), 26–27. Interview with César Hidalgo.Google Scholar
  84. Oommen, B. J., & Rueda, L. G. (2005). A formal analysis of why heuristic functions work. Artificial Intelligence, 164(1–2), 1–22.MathSciNetzbMATHGoogle Scholar
  85. Pasanek, B. (2015). The mind is a metaphor. http://metaphors.iath.virginia.edu/.
  86. Perruchet, P., & Vinter, A. (2002). The self-organizing consciousness. Behavioral and Brain Sciences, 25(3), 297–388.Google Scholar
  87. Piccinini, G. (2004). The first computational theory of mind and brain: A close look at McCulloch and Pitts’s ‘Logical calculus of ideas immanent in nervous activity’. Synthese, 141, 175–215. For a reply, see Aizawa (2010).Google Scholar
  88. Piccinini, G. (2005). Symbols, strings, and spikes: The empirical refutation of computationalism. Abstract at https://philpapers.org/rec/PICSSA; unpublished paper at https://web.archive.org/web/20080216023546/http://www.umsl.edu/~piccininig/Symbols%20Strings%20and%20Spikes%2019.htm. superseded by Piccinini and Bahar (2013).
  89. Piccinini, G. (2006). Computational explanation in neuroscience. Synthese, 153(3), 343–353.MathSciNetGoogle Scholar
  90. Piccinini, G. (2007a). Computational explanation and mechanistic explanation of mind. In M. Marraffa, M. D. Caro, & F. Ferretti (Eds.), Cartographies of the mind: Philosophy and psychology in intersection (pp. 23–36). Dordrecht: Springer.Google Scholar
  91. Piccinini, G. (2007b). Computational modelling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy, 85(1), 93–115.MathSciNetGoogle Scholar
  92. Piccinini, G. (2007c). Computing mechanisms. Philosophy of Science, 74(4), 501–526.MathSciNetGoogle Scholar
  93. Piccinini, G. (2008). Computers. Pacific Philosophical Quarterly, 89, 32–73.Google Scholar
  94. Piccinini, G. (2010). The mind as neural software? Understanding functionalism, computationalism, and computational functionalism. Philosophy and Phenomenological Research, 81(2), 269–311.Google Scholar
  95. Piccinini, G. (2011). The physical Church–Turing thesis: Modest or bold? British Journal for the Philosophy of Science, 62, 733–769.MathSciNetzbMATHGoogle Scholar
  96. Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.zbMATHGoogle Scholar
  97. Piccinini, G. (2018). Computation and representation in cognitive neuroscience. Minds and Machines, 28(1), 1–6.Google Scholar
  98. Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 34, 453–488.Google Scholar
  99. Polya, G. (1957). How to solve it: A new aspect of mathematical method (2nd ed.). Garden City, NY: Doubleday Anchor.zbMATHGoogle Scholar
  100. Pour-El, M. B. (1974). Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Transactions of the American Mathematical Society, 199, 1–28.MathSciNetzbMATHGoogle Scholar
  101. Powell, C. S. (2006, April 2). Welcome to the machine. New York Times Book Review, 19. http://www.nytimes.com/2006/04/02/books/review/02powell.html.
  102. Putnam, H. (1965). Trial and error predicates and the solution to a problem of Mostowski. Journal of Symbolic Logic, 30(1), 49–57.MathSciNetzbMATHGoogle Scholar
  103. Putnam, H. (1988). Representation and Reality. Cambridge, MA: MIT Press.Google Scholar
  104. Randell, B. (1994). The origins of computer programming. IEEE Annals of the History of Computing, 16(4), 6–14.MathSciNetzbMATHGoogle Scholar
  105. Rapaport, W. J. (1988). Syntactic semantics: Foundations of computational natural-language understanding. In J. H. Fetzer (Ed.), Aspects of artificial intelligence (pp. 81–131). Dordrecht: Kluwer. http://www.cse.buffalo.edu/~rapaport/Papers/synsem.pdf; reprinted with numerous errors in Eric Dietrich (Ed.). (1994). Thinking machines and virtual persons: Essays on the intentionality of machines (San Diego: Academic Press): 225–273.
  106. Rapaport, W. J. (1998). How minds can be computational systems. Journal of Experimental and Theoretical Artificial Intelligence, 10, 403–419.zbMATHGoogle Scholar
  107. Rapaport, W. J. (1999). Implementation is semantic interpretation. The Monist, 82, 109–130.Google Scholar
  108. Rapaport, W. J. (2005a). Implemention is semantic interpretation: Further thoughts. Journal of Experimental and Theoretical Artificial Intelligence, 17(4), 385–417.MathSciNetGoogle Scholar
  109. Rapaport, W. J. (2005b). Philosophy of computer science: An introductory course. Teaching Philosophy, 28(4), 319–341.MathSciNetGoogle Scholar
  110. Rapaport, W. J. (2007). Searle on brains as computers. American Philosophical Association Newsletter on Philosophy and Computers, 6(2), 4–9.Google Scholar
  111. Rapaport, W. J. (2012). Semiotic systems, computers, and the mind: How cognition could be computing. International Journal of Signs and Semiotic Systems 2(1), 32–71. Revised version published as Rapaport (2018b).Google Scholar
  112. Rapaport, W. J. (2017a). On the relation of computing to the world. In T. M. Powers (Ed.), Philosophy and computing: Essays in epistemology, philosophy of mind, logic, and ethics (pp. 29–64). Cham: Springer. Paper based on 2015 IACAP Covey Award talk; preprint at http://www.cse.buffalo.edu/~rapaport/Papers/rapaport4IACAP.pdf.
  113. Rapaport, W. J. (2017b). Semantics as syntax. American Philosophical Association Newsletter on Philosophy and Computers, 17(1), 2–11.Google Scholar
  114. Rapaport, W. J. (2017c). What is computer science? American Philosophical Association Newsletter on Philosophy and Computers16(2), 2–22. Paper based on 2017 APA Barwise Award talk. http://c.ymcdn.com/sites/www.apaonline.org/resource/collection/EADE8D52-8D02-4136-9A2A-729368501E43/ComputersV16n2.pdf.
  115. Rapaport, W. J. (2018a). Philosophy of computer science. Current draft in progress at http://www.cse.buffalo.edu/~rapaport/Papers/phics.pdf.
  116. Rapaport, W. J. (2018b). Syntactic semantics and the proper treatment of computationalism. In M. Danesi (Ed.), Empirical research on semiotics and visual rhetoric (pp. 128–176). Hershey, PA: IGI Global.Google Scholar
  117. Rescorla, M. (2012). How to integrate representation into computational modeling, and why we should. Journal of Cognitive Science (South Korea), 13(1), 1–38.Google Scholar
  118. Rescorla, M. (2015). The computational theory of mind. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2015 ed.). http://plato.stanford.edu/archives/win2015/entries/computational-mind/.
  119. Richards, W. (1988). Natural computation. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  120. Robinson, J. A. (1994). Logic, computers, Turing, and von Neumann. In K. Furukawa, D. Michie, & S. Muggleton (Eds.), Machine Intelligence 13: Machine intelligence and inductive learning (pp. 1–35). Oxford: Clarendon Press.Google Scholar
  121. Romanycia, M. H., & Pelletier, F. J. (1985). What is a heuristic? Computational Intelligence, 1(2), 47–58.Google Scholar
  122. Rubinoff, M. (1953). Analogue vs. digital computers—a comparison. Proceedings of the IRE, 41(10), 1254–1262.MathSciNetGoogle Scholar
  123. Sackur, J., & Dehaene, S. (2009). The cognitive architecture for chaining of two mental operations. Cognition, 111, 187–211.Google Scholar
  124. Samuel, A. L. (1953). Computing bit by bit, or digital computers made easy. Proceedings of the IRE, 41(10), 1223–1230.Google Scholar
  125. Scheutz, M. (2012). What it is not to implement a computation: A critical analysis of Chalmers’ notion of implementation. Journal of Cognitive Science (South Korea), 13(1), 75–106.Google Scholar
  126. Schmidhuber, J. (2002). Zuse’s thesis: The universe is a computer. http://www.idsia.ch/~juergen/digitalphysics.html.
  127. Schmidhuber, J. (2006). The computational universe. American Scientist, 94, 364ff.Google Scholar
  128. Schulman, A. N. (2009). Why minds are not like computers. The New Atlantis, 23, 46–68.Google Scholar
  129. Searle, J. R. (1990). Is the brain a digital computer? Proceedings and Addresses of the American Philosophical Association64(3), 21–37. Reprinted in slightly revised form as Searle (1992, Ch. 9).Google Scholar
  130. Searle, J. R. (1992). The rediscovery of the mind. Cambridge, MA: MIT Press.Google Scholar
  131. Shagrir, O. (1999). What is computer science about? The Monist, 82(1), 131–149.Google Scholar
  132. Shagrir, O. (2012). Can a brain possess two minds? Journal of Cognitive Science (South Korea), 13(2), 145–165.Google Scholar
  133. Shapiro, E., & Benenson, Y. (2006). Bringing DNA computers to life. Scientific American, 294(5), 44–51.Google Scholar
  134. Shapiro, S. (2009). We hold these truths to be self-evident: But what do we mean by that? Review of Symbolic Logic, 2(1), 175–207.MathSciNetzbMATHGoogle Scholar
  135. Shapiro, S. C. (2001). Computer science: The study of procedures. Technical report, Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY. http://www.cse.buffalo.edu/~shapiro/Papers/whatiscs.pdf; see also http://www.cse.buffalo.edu/~shapiro/Courses/CSE115/notes2.html.
  136. Shepherdson, J., & Sturgis, H. (1963). Computability of recursive functions. Journal of the ACM, 10(2), 217–255.MathSciNetzbMATHGoogle Scholar
  137. Simon, H. A. (1996). Computational theories of cognition. In W. O’Donohue & R. F. Kitchener (Eds.), The philosophy of psychology (pp. 160–172). London: Sage.Google Scholar
  138. Skow, B. (2007). Are shapes intrinsic? Philosophical Studies, 133, 111–130.MathSciNetGoogle Scholar
  139. Squires, R. (1970). On one’s mind. Philosophical Quarterly, 20(81), 347–356.Google Scholar
  140. Sternberg, R. J. (1990). Metaphors of mind: Conceptions of the nature of intelligence. New York: Cambridge University Press.Google Scholar
  141. Stewart, I. (1994). A subway named Turing. Scientific American, 104, 106–107.Google Scholar
  142. Stoll, C. (2006). When slide rules ruled. Scientific American, 294(5), 80–87.MathSciNetGoogle Scholar
  143. Suber, P. (1997). Formal systems and machines: An isomorphism. http://www.earlham.edu/~peters/courses/logsys/machines.htm.
  144. Thomason, R. H. (2003). Dynamic contextual intensional logic: Logical foundations and an application. In P. Blackburn (Ed.), CONTEXT 2003: Lecture notes in artificial intelligence (Vol. 2680, pp. 328–341). Berlin: Springer.Google Scholar
  145. Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.MathSciNetzbMATHGoogle Scholar
  146. Turing, A. M. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical SocietyS2-45(1), 161–228. Reprinted with commentary in Copeland (2004, Ch. 3).Google Scholar
  147. Turing, A. M. (1947). Lecture to the London Mathematical Society on 20 February 1947. In B. J. Copeland (Ed.), The essential Turing (pp. 378–394). Oxford: Oxford University Press (2004). Editorial commentary on pp. 362–377. https://www.academia.edu/34875977/Alan_Turing_LECTURE_TO_THE_LONDON_MATHEMATICAL_SOCIETY_1947_.
  148. Turing, A. M. (1951, 1996). Intelligent machinery, a heretical theory. Philosophia Mathematica4(3), 256–260. http://viola.informatik.uni-bremen.de/typo/fileadmin/media/lernen/Turing-_Intelligent_Machinery.pdf; typescripts and further bibliographic information at http://www.turing.org.uk/sources/biblio1.html.
  149. US National Library of Medicine. (2015). Dream anatomy. https://www.nlm.nih.gov/dreamanatomy/da_g_IV-A-02.html.
  150. Vardi, M. Y. (2013). Who begat computing? Communications of the ACM, 56(1), 5.Google Scholar
  151. von Neumann, J. (1945 (1993)). First draft report on the EDVAC. IEEE Annals of the History of Computing15(4), 27–75Google Scholar
  152. Wang, H. (1957). A variant to Turing’s theory of computing machines. Journal of the ACM, 4(1), 63–92.MathSciNetGoogle Scholar
  153. Weatherson, B., & Marshall, D. (2018). Intrinsic vs. extrinsic properties. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2018 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2018/entries/intrinsic-extrinsic/.
  154. Wegner, P. (1997). Why interaction is more powerful than algorithms. Communications of the ACM, 40(5), 80–91.Google Scholar
  155. Weinberg, S. (2002). Is the universe a computer? New York Review of Books, 49(16), 43–47.Google Scholar
  156. Weizenbaum, J. (1976). Computer power and human reason. New York: W.H. Freeman.Google Scholar
  157. Wheeler, D. L. (1997, October 3). An ancient feud: Who invented the computer? Chronicle of Higher Education, B2.Google Scholar
  158. Wolfram, S. (2002a). Introduction to A new kind of science. http://www.stephenwolfram.com/publications/introduction-to-a-new-kind-of-science/.
  159. Wolfram, S. (2002b). A new kind of science. Wolfram Media. http://www.wolframscience.com/nks/.
  160. Zobrist, A. L. (2000). Computer games: Traditional. In A. Ralston, E. D. Reilly, & D. Hemmendinger (Eds.), Encyclopedia of Computer Science (4th ed.). New York: Grove’s Dictionaries.Google Scholar
  161. Zylberberg, A., Dehaene, S., Roelfsema, P. R., & Sigman, M. (2011). The human Turing machine: A neural framework for mental programs. Trends in Cognitive Science, 15(7), 293–300.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Center for Cognitive ScienceUniversity at Buffalo, The State University of New YorkBuffaloUSA
  2. 2.Department of Philosophy, Center for Cognitive ScienceUniversity at Buffalo, The State University of New YorkBuffaloUSA
  3. 3.Department of Linguistics, Center for Cognitive ScienceUniversity at Buffalo, The State University of New YorkBuffaloUSA

Personalised recommendations