Minds and Machines

, Volume 28, Issue 1, pp 53–75 | Cite as

The Brain as an Input–Output Model of the World

  • Oron Shagrir


An underlying assumption in computational approaches in cognitive and brain sciences is that the nervous system is an input–output model of the world: Its input–output functions mirror certain relations in the target domains. I argue that the input–output modelling assumption plays distinct methodological and explanatory roles. Methodologically, input–output modelling serves to discover the computed function from environmental cues. Explanatorily, input–output modelling serves to account for the appropriateness of the computed function to the explanandum information-processing task. I compare very briefly the modelling explanation to mechanistic and optimality explanations, noting that in both cases the explanations can be seen as complementary rather than contrastive or competing.


Modelling Representation Computational models Cognitive neuroscience Mechanistic explanations Optimality 



I am grateful to Lotem Elber-Dorozko, Jens Harbecke, Shahar Hechtlinger, David Kaplan, Colin Klein, Arnon Levy, Gal Patel and two anonymous referees for their comments. Early versions of the paper were presented at seminars in Macquarie University, Tel-Aviv University, University of Canterbury, University of Otago and at the following conferences: The Aims of Brain Research: Scientific and Philosophical Perspectives (Jerusalem), Conference of the International Association for Computing and Philosophy (Thessaloniki), and the 7th AISB Symposium on Computing and Philosophy (London). I thank the participants for stimulating discussion. This research was supported by a grant from GIF, the German-Israeli Foundation for Scientific Research and Development.


  1. Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230, 456–458.CrossRefGoogle Scholar
  2. Bartels, A. (2006). Defending the structural concept of representation. THEORIA. Revista de Teoría, Historia y Fundamentos de la Ciencia, 21, 7–19.MathSciNetMATHGoogle Scholar
  3. Bassett, J. P., & Taube, J. S. (2001). Neural correlates for angular head velocity in the rat dorsal tegmental nucleus. Journal of Neuroscience, 21, 5740–5751.Google Scholar
  4. Bechtel, W. (2012). Understanding endogenously active mechanisms: A scientific and philosophical challenge. European Journal for Philosophy of Science, 2, 233–248.CrossRefGoogle Scholar
  5. Bechtel, W., & Richardson, R. C. (1993). Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton: Princeton University Press.Google Scholar
  6. Bechtel, W., & Shagrir, O. (2015). The non-redundant contributions of Marr’s three levels of analysis for explaining information-processing mechanisms. Topics in Cognitive Science, 7, 312–322.CrossRefGoogle Scholar
  7. Boone, W., & Piccinini, G. (2016). Mechanistic abstraction. Philosophy of Science, 83, 686–697.CrossRefGoogle Scholar
  8. Cannon, S. C., & Robinson, D. (1987). Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. Journal of Neurophysiology, 57, 1383–1409.CrossRefGoogle Scholar
  9. Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51–62.CrossRefGoogle Scholar
  10. Chirimuuta, M. (2014). Minimal models and canonical neural computations: The distinctness of computational explanation in neuroscience. Synthese, 191, 127–153.CrossRefGoogle Scholar
  11. Churchland, P. M. (2007). Neurophilosophy at work. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford: Oxford University Press.Google Scholar
  13. Collett, M., & Collett, T. S. (2000). How do insects use path integration for their navigation? Biological Cybernetics, 83, 245–259.CrossRefGoogle Scholar
  14. Conklin, J., & Eliasmith, C. (2005). Controlled attractor network model of path integration in the rat. Journal of Computational Neuroscience, 18, 183–203.MathSciNetCrossRefGoogle Scholar
  15. Craver, C. F. (2016). The explanatory power of network models. Philosophy of Science, 83, 698–709.MathSciNetCrossRefGoogle Scholar
  16. Cummins, R. (1989). Meaning and mental representation. Cambridge: MIT Press.Google Scholar
  17. Da Costa, N. C. A., & French, S. (2003). Science and partial truth: A unitary understanding of models and scientific reasoning. Oxford: Oxford University Press.CrossRefGoogle Scholar
  18. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press.MATHGoogle Scholar
  19. Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representation and dynamics in neurobiological systems. Cambridge: MIT Press.Google Scholar
  20. Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14, 180–192.CrossRefGoogle Scholar
  21. Fodor, J. A. (1994). The elm and the expert: Mentalese and its semantics. Cambridge: MIT Press.Google Scholar
  22. French, S., & Ladyman, J. (1999). Reinflating the semantic approach. International Studies in the Philosophy of Science, 13, 103–121.MathSciNetCrossRefMATHGoogle Scholar
  23. Frigg, R., & Hartmann, S. (2017). Models in science. In Zalta E. N. (Ed.), The Stanford Encyclopedia of Philosophy. <>.
  24. Gallistel, C. R., & King, A. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. New York: Blackwell/Wiley.CrossRefGoogle Scholar
  25. Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71, 742–752.CrossRefGoogle Scholar
  26. Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69, S342–S353.CrossRefGoogle Scholar
  27. Glimcher, P. W. (1999). Oculomotor control. In R. A. Wilson & F. C. Kiel (Eds.), MIT encyclopedia of cognitive science (pp. 618–620). Cambridge: MIT Press.Google Scholar
  28. Goldman, M. S., Kaneko, C. R., Major, G., Aksay, E., Tank, D. W., & Seung, H. S. (2002). Linear regression of eye velocity on eye position and head velocity suggests a common oculomotor neural integrator. Journal of Neurophysiology, 88, 659–665.CrossRefGoogle Scholar
  29. Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In R. Sun (Ed.), The Cambridge handbook of computational cognitive modeling (pp. 59–100). Cambridge: Cambridge University Press.Google Scholar
  30. Grush, R. (2001). The semantic challenge to computational neuroscience. In P. Machamer, R. Grush, & P. McLaughlin (Eds.), Theory and method in the neurosciences (pp. 155–172). Pittsburgh: University of Pittsburgh Press.Google Scholar
  31. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–442.Google Scholar
  32. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.CrossRefGoogle Scholar
  33. Haugeland, J. (1981). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, and artificial intelligence (pp. 1–34). Cambridge: MIT Press.Google Scholar
  34. Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.CrossRefGoogle Scholar
  35. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154.CrossRefGoogle Scholar
  36. Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183, 339–373.CrossRefGoogle Scholar
  37. Kaplan, D. M. (2017). Neural computation, multiple realizability, and the prospects for mechanistic explanation. In Kaplan, D. M. (Ed.), Explanation and integration in mind and brain science. Oxford University Press (forthcoming).Google Scholar
  38. Kaplan, D. M., & Craver, C. F. (2011). The explanatory force of dynamical and mathematical models in neuroscience : A mechanistic perspective. Philosophy of Science, 78, 601–627.MathSciNetCrossRefGoogle Scholar
  39. Leigh, R. J., & Zee, D. S. (2006). The neurology of eye movements (4th ed.). New York: Oxford University Press.Google Scholar
  40. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.MathSciNetCrossRefGoogle Scholar
  41. Marr, D. C. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York: Freeman.Google Scholar
  42. Marr, D. C., & Hildreth, E. C. (1980). Theory of edge detection. Proceedings of the Royal Society of London, Series B: Biological Sciences, 207, 187–217.CrossRefGoogle Scholar
  43. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M.-B. (2006). Path integration and the neural basis of the ‘cognitive map’. Nature Reviews Neuroscience, 7, 663–678.CrossRefGoogle Scholar
  44. Miłkowski, M. (2013). Explaining the computational mind. Cambridge: MIT Press.Google Scholar
  45. Mittelstaedt, H., & Mittelstaedt, M.-L. (1982). Homing by path integration. In F. Papi & H. G. Wallraff (Eds.), Avian navigation (pp. 290–297). Berlin: Springer.CrossRefGoogle Scholar
  46. O’Brien, G., & Opie, J. (2009). The role of representation in computation. Cognitive Processing, 10, 53–62.CrossRefGoogle Scholar
  47. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.Google Scholar
  48. Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.CrossRefMATHGoogle Scholar
  49. Piccinini, G., & Craver, C. F. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183, 283–311.CrossRefGoogle Scholar
  50. Pylyshyn, Z. W. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge: MIT Press.Google Scholar
  51. Ramsey, W. (2007). Representation reconsidered. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  52. Robinson, D. A. (1968). The oculomotor control system: A review. Proceedings of the IEEE, 56, 1032–1049.CrossRefGoogle Scholar
  53. Robinson, D. A. (1989). Integrating with neurons. Annual Review of Neuroscience, 12, 33–45.CrossRefGoogle Scholar
  54. Rusanen, A.-M., & Lappi, O. (2016). On computational explanations. Synthese, 193, 3931–3949.MathSciNetCrossRefGoogle Scholar
  55. Ryder, D. (2004). SINBAD neurosemantics: A theory of mental representation. Mind and Language, 19, 211–240.CrossRefGoogle Scholar
  56. Seung, H. S. (1998). Continuous attractors and oculomotor control. Neural Networks, 11, 1253–1258.CrossRefGoogle Scholar
  57. Shagrir, O. (2010). Marr on computational-level theories. Philosophy of Science, 77, 477–500.MathSciNetCrossRefGoogle Scholar
  58. Shagrir, O. (2012). Structural representations and the brain. British Journal for the Philosophy of Science, 63, 519–545.CrossRefGoogle Scholar
  59. Shagrir, O., & Bechtel, W. (2017). Marr’s computational level and delineating phenomena. In Kaplan, D. M. (Ed.), Integrating mind and brain science: Mechanistic perspectives and beyond. Oxford University Press (forthcoming).Google Scholar
  60. Shapiro, L. A. (2016). Mechanism or bust? Explanation in psychology. British Journal for the Philosophy of Science (forthcoming).Google Scholar
  61. Sharp, P. E., Tinkelman, A., & Cho, J. (2001). Angular velocity and head direction signals recorded from the dorsal tegmental nucleus of Gudden in the rat: Implications for path integration in the head direction cell circuit. Behavioral Neuroscience, 115, 571–588.CrossRefGoogle Scholar
  62. Suárez, M. (2010). Scientific representation. Philosophy Compass, 5, 91–101.CrossRefGoogle Scholar
  63. Swoyer, C. (1991). Structural representation and surrogative reasoning. Synthese, 87, 449–508.MathSciNetCrossRefGoogle Scholar
  64. Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. New York: Oxford University Press.CrossRefGoogle Scholar
  65. Woodward, J. (2003). Making things happen: A theory of causal explanation. New York: Oxford University Press.Google Scholar
  66. Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331, 679–684.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Departments of Philosophy and Cognitive ScienceThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations