Anscombe, G. E. M. (1957). Intention. Oxford: Basil Blackwell.
Google Scholar
Banerjee, M., & Dubois, D. (2014). A simple logic for reasoning about incomplete knowledge. International Journal of Approximate Reasoning, 55, 639–653.
MathSciNet
Article
MATH
Google Scholar
Benferhat, S., Dubois, D., Kaci, S., & Prade, H. (2002). Bipolar possibilistic representations. In A. Darwiche & N. Friedman (Eds.), Proceedings of the 18th conference in uncertainty in artificial intelligence (UAI ’02) (pp. 45–52). Edmonton, Alberta: Morgan Kaufmann.
Google Scholar
Benferhat, S., Dubois, D., Kaci, S., & Prade, H. (2006). Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions. Information Fusion, 7, 135–150.
Article
Google Scholar
Benferhat, S., Dubois, D., & Prade, H. (1999). Towards a possibilistic logic handling of preferences. In Proceedings of the 16th conference on artificial intelligence (IJCAI 99) (pp. 1370–1375). Stockholm: Morgan Kaufmann.
Benferhat, S., Dubois, D., & Prade, H. (2001). A computational model for belief change and fusing ordered belief bases. In M.-A. Williams & H. Rott (Eds.), Frontiers in belief revision (pp. 109–134). Dordrecht: Kluwer Academic Publishers.
Chapter
Google Scholar
Benferhat, S., Dubois, D., Prade, H., & Williams, M.-A. (2002). A practical approach to revising prioritized knowledge bases. Studia Logica, 70, 105–130.
MathSciNet
Article
MATH
Google Scholar
Benferhat, S., & Kaci, S. (2003). Logical representation and fusion of prioritized information based on guaranteed possibility measures: Application to the distance-based merging of classical bases. Artificial Intelligence, 148(1–2), 291–333.
MathSciNet
Article
MATH
Google Scholar
Bonanno, G. (2009). Rational choice and AGM belief revision. Artificial Intelligence, 173(12–13), 1194–1203.
MathSciNet
Article
MATH
Google Scholar
Boutilier, C. (1993). Revision sequences and nested conditionals. In Proceedings of the 13th international joint conference on artificial intelligence (IJCAI’93) (pp. 519–525). Chambéry: Morgan Kaufmann.
Casali, A., Godo, L., & Sierra, C. (2011). A graded BDI agent model to represent and reason about preferences. Artificial Intelligence, 175, 1468–1478.
MathSciNet
Article
MATH
Google Scholar
Castelfranchi, C., & Paglieri, F. (2007). The role of beliefs in goal dynamics: Prolegomena to a constructive theory of intentions. Synthese, 155(2), 237–263.
MathSciNet
Article
Google Scholar
Doyle, J., Shoham, Y., & Wellman, M. P. (1991). A logic of relative desire (preliminary report). In Z. Ras & M. Zemankova (Eds.), Methodologies for intelligent systems (ISMIS 1991), lecture notes in computer science (Vol. 542, pp. 16–31). New York: Springer.
Google Scholar
Dretske, F. (1988). Explaining behavior: Reasons in a world of causes. Cambridge: MIT Press.
Google Scholar
Dubois, D. (1986). Belief structures, possibility theory and decomposable confidence measures on finite sets. Computers and Artificial Intelligence (Bratislava), 5(6), 403–416.
MATH
Google Scholar
Dubois, D., Hajek, P., & Prade, H. (2000). Knowledge-driven versus data-driven logics. Journal of logic, Language and information, 9, 65–89.
MathSciNet
Article
MATH
Google Scholar
Dubois, D., Lorini, E., & Prade, H. (2013). Bipolar possibility theory as a basis for a logic of desires and beliefs. In W. Liu, V. S. Subrahmanian, & J. Wijsen (Eds.), Proceedings of the 7th international conference scalable uncert. Mgmt. (SUM’13), LNCS 8078. Washington, DC: Springer.
Google Scholar
Dubois, D., Lorini, E., & Prade, H. (2014). Nonmonotonic desires–A possibility theory viewpoint. In R. Booth, G. Casini, S. Klarman, G. Richard, & I. J. Varzinczak (Eds.), Proceedings of the international workshop on defeasible and ampliative reasoning (DARe@ECAI 2014) (Vol. 1212). Prague: CEUR Workshop Proceedings.
Google Scholar
Dubois, D., Lorini, E., & Prade, H. (2015). Revising desires–A possibility theory viewpoint. In T. Andreasen, H. Christiansen, J. Kacprzyk, H. Larsen, G. Pasi, O. Pivert, G. De Tré, M. A. Vila, A. Yazici, & S. Zadrożny (Eds.), Proceedings of the 11th international conference on flexible query answering systems (FQAS’15) (Vol. 400, pp. 3–13). Advances in Intelligent Systems and Computing series.
Dubois, D., Lorini, E., & Prade, H. (2016). A possibility theory-based approach to desire change. In R. Booth, G. Casini, S. Klarman, G. Richard, & I. J. Varzinczak (Eds.), Proceedings of the international workshop on defeasible and ampliative reasoning (DARe@ECAI 2016) (Vol. 1626). The Hague: CEUR Workshop Proceedings.
Google Scholar
Dubois, D., & Prade, H. (1991). Epistemic entrenchment and possibilistic logic. Artificial Intelligence, 50, 223–239.
MathSciNet
Article
MATH
Google Scholar
Dubois, D., & Prade, H. (1992). Belief change and possibility theory. In P. Gärdenfors (Ed.), Belief revision (pp. 142–182). Cambridge: Cambridge University Press.
Chapter
Google Scholar
Dubois, D., & Prade, H. (1998). Possibility theory: Qualitative and quantitative aspects. In D. Gabbay & P. Smets (Eds.), Quantified representation of uncertainty and imprecision, handbook of defeasible reasoning and uncertainty management systems (Vol. 1, pp. 169–226). Dordrecht: Kluwer.
Google Scholar
Dubois, D., & Prade, H. (2004). Possibilistic logic: A retrospective and prospective view. Fuzzy Sets and Systems, 144, 3–23.
MathSciNet
Article
MATH
Google Scholar
Dubois, D., & Prade, H. (2009a). Accepted beliefs, revision and bipolarity in the possibilistic framework. In F. Huber & C. Schmidt-Petri (Eds.), Degrees of belief (pp. 161–184). New York: Springer.
Chapter
Google Scholar
Dubois, D., & Prade, H. (2009b). An overview of the asymmetric bipolar representation of positive and negative information in possibility theory. Fuzzy Sets and Systems, 160(10), 1355–1366.
MathSciNet
Article
MATH
Google Scholar
Dubois, D., & Prade, H. (2012). Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets and Systems, 192, 3–24.
MathSciNet
Article
MATH
Google Scholar
Gärdenfors, P. (1988). Knowledge in flux. Modeling the dynamics of epistemic states. Cambridge: The MIT Press.
MATH
Google Scholar
Gärdenfors, P. (1990). Belief revision and nonmonotonic logic: Two sides of the same coin? In Proceedings of the 9th European conference on artificial intelligence (ECAI’90) (pp. 768–773). Stockholm.
Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17, 157–170.
MathSciNet
Article
MATH
Google Scholar
Harsanyi, J. (1955). Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility. Journal of Political Economy, 63, 309–321.
Article
Google Scholar
Harsanyi, J. (1982). Morality and the theory of rational behaviour. In A. K. Sen & B. Williams (Eds.), Utilitarianism and beyond. Cambridge: Cambridge University Press.
Google Scholar
Humberstone, I. L. (1992). Direction of fit. Mind, 101(401), 59–83.
Article
Google Scholar
Hume, D. (1978). A treatise of human nature (2nd Oxford edn.). L. A. Selby-Bigge & P. H. Nidditch (Eds.), Oxford: Oxford University Press.
Lang, J., & van der Torre, L. (1996). Conditional desires and utilities: An alternative logical approach to qualitative decision theory. In W. Wahlster (Ed.), Proceedings of the 12th European conference artificial intelligence (ECAI’96) (pp. 318–322). Budapest: Wiley .
Google Scholar
Lang, J., & van der Torre, L. (2008). From belief change to preference change. In M. Ghallab, C. D. Spyropoulos, N. Fakotakis, & N. M. Avouris (Eds.), Proceedings of the 18th European conference on artificial intelligence (ECAI’08) (pp. 351–355). Patras: IOS Press.
Google Scholar
Lang, J., van der Torre, L., & Weydert, E. (2002). Utilitarian desires. Journal of Autonomous Agents and Multi-Agent Systems, 5, 329–363.
Article
Google Scholar
Lang, J., van der Torre, L., & Weydert, E. (2003). Hidden uncertainty in the logical representation of desires. In G. Gottlob & T. Walsh (Eds.), Proceedings of the 18th international joint conference on artificial intelligence (IJCAI’03) (pp. 685–690). Acapulco: Morgan Kaufmann.
Google Scholar
Lewis, D. (1973). Counterfactuals and comparative possibility. Journal of Philosophical Logic, 2(4), 418–446.
MathSciNet
Article
MATH
Google Scholar
Locke, J. (1975). An essay concerning human understanding. Oxford: Oxford University Press. The Clarendon Edition of the Works of John Locke.
Google Scholar
Lorini, E. (2014). A logic for reasoning about moral agents. Logique et Analyse, Centre National de Recherches en Logique (Belgium), 58(230), 177–218 .
MathSciNet
Google Scholar
Platts, M. (1979). Ways of meaning. London: Routledge and Kegan Paul.
Google Scholar
Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. In Proceedings of the 2nd international conference on principles of knowledge representation and reasoning (pp. 473–484).
Rott, H. (2001). Change, choice and inference. A study of belief revision and nonmonotonic reasoning. Oxford: Clarendon Press.
MATH
Google Scholar
Schroeder, T. (2004). Three faces of desires. Oxford: Oxford University Press.
Book
Google Scholar
Searle, J. (1979). Expression and meaning. Cambridge: Cambridge University Press.
Book
Google Scholar
Searle, J. (2001). Rationality in action. Cambridge: MIT Press.
Google Scholar
Spohn, W. (2012). The laws of belief: Ranking theory and its philosophical applications. Oxford: Oxford University Press.
Book
Google Scholar
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.
Article
MATH
Google Scholar
van Benthem, J., Girard, P., & Roy, O. (2009). Everything else being equal: A modal logic for ceteris paribus preferences. Journal of Philosophical Logic, 38, 83–125.
MathSciNet
Article
MATH
Google Scholar
van Benthem, J., & Liu, F. (2007). Dynamic logic of preference upgrade. Journal of Applied Non-Classical Logics, 17(2), 157–182.
MathSciNet
Article
MATH
Google Scholar
Von Wright, G. H. (1963). The logic of preference. Edinburgh: Edinburgh University Press.
Google Scholar
Von Wright, G. H. (1972). The logic of preference reconsidered. Theory and Decision, 3, 140–169.
Article
MATH
Google Scholar
Zadeh, L. A. (1978). PRUF: A meaning representation language for natural languages. International Journa of Man-Machine Studies, 10, 395–460.
MathSciNet
Article
MATH
Google Scholar