Minds and Machines

, Volume 27, Issue 1, pp 119–165 | Cite as

Conditionals, Counterfactuals, and Rational Reasoning: An Experimental Study on Basic Principles

  • Niki PfeiferEmail author
  • Leena Tulkki


We present a unified approach for investigating rational reasoning about basic argument forms involving indicative conditionals, counterfactuals, and basic quantified statements within coherence-based probability logic. After introducing the rationality framework, we present an interactive view on the relation between normative and empirical work. Then, we report a new experiment which shows that people interpret indicative conditionals and counterfactuals by coherent conditional probability assertions and negate conditionals by negating their consequents. The data support the conditional probability interpretation of conditionals and the narrow-scope reading of the negation of conditionals. Finally, we argue that coherent conditional probabilities are important for probabilistic analyses of conditionals, nonmonotonic reasoning, quantified statements, and paradoxes.


Coherence-based probability logic Conditionals Counterfactuals Experimental study Human reasoning Negation Nonmonotonic reasoning Quantification Paradoxes Probabilistic reasoning Rationality 



We thank David Over and Giuseppe Sanfilippo as well as three anonymous referees for helpful comments on the work reported in this paper. This research was supported by the DFG Project PF 740/2-2 (awarded to Niki Pfeifer) as part of the DFG Priority Program “New Frameworks of Rationality” (SPP1516).


  1. Adams, E. W. (1975). The logic of conditionals. An application of probability to deduction. Dordrecht: Reidel.zbMATHGoogle Scholar
  2. Baioletti, M., Capotorti, A., Galli, L., Tognoloni, S., Rossi, F., & Vantaggi, B. (2016). CkC (Check Coherence package; version e6, November 2016). Retrieved November 2016
  3. Benferhat, S., Dubois, D., & Prade, H. (1997). Nonmonotonic reasoning, conditional objects and possibility theory. Artificial Intelligence, 92, 259–276.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bezzazi, H., Makinson, D., & Pérez, R. P. (1997). Beyond rational monotony: Some strong non-horn rules for nonmonotonic inference relations. Journal of Logic and Computation, 7(5), 605–631.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Biazzo, V., & Gilio, A. (2000). A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments. International Journal of Approximate Reasoning, 24(2–3), 251–272.MathSciNetCrossRefzbMATHGoogle Scholar
  6. BonJour, L. (1985). The structure of empirical knowledge. Cambridge: Harvard University Press.Google Scholar
  7. Bonnefon, J.-F., Da Silva Neves, R., Dubois, D., & Prade, H. (2012). Qualitative and quantitative conditions for the transitivity of perceived causation: Theoretical and experimental results. Annals of Mathematics and Artificial Intelligence, 64, 311–333.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Capotorti, A., Lad, F., & Sanfilippo, G. (2007). Reassessing accuracy rates of median decisions. American Statistician, 61(2), 132–138.MathSciNetCrossRefGoogle Scholar
  9. Chater, N., & Oaksford, M. (1999). The probability heuristics model of syllogistic reasoning. Cognitive Psychology, 38, 191–258.CrossRefGoogle Scholar
  10. Cohen, A. (1999). Generics, frequency adverbs, and probability. Linguistics and Philosophy, 22, 221–253.CrossRefGoogle Scholar
  11. Cohen, A. (2012). Generics as modals. Recherches linguistiques de Vincennes, 41, 63–82.CrossRefGoogle Scholar
  12. Coletti, G., & Scozzafava, R. (2002). Probabilistic logic in a coherent setting. Dordrecht: Kluwer.CrossRefzbMATHGoogle Scholar
  13. Coletti, G., Scozzafava, R., & Vantaggi, B. (2015). Possibilistic and probabilistic logic under coherence: Default reasoning and System P. Mathematica Slovaca, 65(4), 863–890.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Cruz, N., Baratgin, J., Oaksford, M., & Over, D. E. (2015). Bayesian reasoning with ifs and ands and ors. Frontiers in Psychology, 6, Article 192.Google Scholar
  15. Cruz, N., Baratgin, J., Oaksford, M., & Over, D. E. (2016). Centering and the meaning of conditionals. In A. Papafragou, D. Grodner, D. Mirman & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (pp. 1104–1109). Philadelphia, PA: The Cognitive Science Society.Google Scholar
  16. Da Silva Neves, R., Bonnefon, J.-F., & Raufaste, E. (2002). An empirical test of patterns for nonmonotonic inference. Annals of Mathematics and Artificial Intelligence, 34, 107–130.MathSciNetCrossRefzbMATHGoogle Scholar
  17. de Finetti, B. (1931/1993). On the subjective meaning of probability (translation; original work published in Fundamenta Mathematicae, 17, 1931). In P. Monari & D. Cocchi (Eds.), Probabilità e induzione (pp. 291–321). Bolognia: Cooperativa Libraria Universitaria Editrice Bologna.Google Scholar
  18. de Finetti, B. (1937/1980). Foresight: Its logical laws, its subjective sources. In H. J. Kyburg & H. E. Smokler (Eds.), Studies in subjective probability (pp. 55–118). Huntington, New York: Robert E. Krieger Publishing Company.Google Scholar
  19. de Finetti, B. (1970/1974). Theory of probability (Vols. 1, 2). Chichester: Wiley.Google Scholar
  20. Douven, I. (2016). The epistemology of indicative conditionals: Formal and empirical approaches. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Elqayam, S., Bonnefon, J.-F., & Over, D. E. (Eds.). (2016). New paradigm psychology of reasoning: Basic and applied perspectives. London: Routledge.Google Scholar
  22. Elqayam, S., & Evans, J. S. B. T. (2011). Substracting “ought” from “is”: Descriptivism versus normativism in the study of human thinking. Behavioral and Brain Sciences, 34, 233–290.CrossRefGoogle Scholar
  23. Evans, J. S. B. T. (2012). Questions and challenges to the new psychology of reasoning. Thinking & Reasoning, 18(1), 5–31.CrossRefGoogle Scholar
  24. Evans, J. S. B. T., Newstead, S. E., & Byrne, R. M. J. (1993). Human reasoning. The psychology of deduction. Hove: Lawrence Erlbaum.Google Scholar
  25. Evans, J. S. B. T., & Over, D. E. (2004). If. Oxford: Oxford University Press.CrossRefGoogle Scholar
  26. Evans, J. S. B. T., Thompson, V. A., & Over, D. E. (2015). Uncertain deduction and conditional reasoning. Frontiers in Psychology, 6, Article 398.Google Scholar
  27. Ford, M. (2004). System LS: A three-tiered nonmonotonic reasoning system. Computational Intelligence, 20(1), 89–108.MathSciNetCrossRefGoogle Scholar
  28. Fugard, A. J. B., Pfeifer, N., Mayerhofer, B., & Kleiter, G. D. (2011). How people interpret conditionals: Shifts towards the conditional event. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(3), 635–648.Google Scholar
  29. Gilio, A. (2002). Probabilistic reasoning under coherence in System P. Annals of Mathematics and Artificial Intelligence, 34, 5–34.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Gilio, A. (2012). Generalizing inference rules in a coherence-based probabilistic default reasoning. International Journal of Approximate Reasoning, 53(3), 413–434.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Gilio, A., Over, D. E., Pfeifer, N., & Sanfilippo, G. (2017). Centering and compound conditionals under coherence. In M. B. Ferraro (Ed.), Soft methods for data science (pp. 253–260). Berlin: Springer.CrossRefGoogle Scholar
  32. Gilio, A., Over, D. E., Pfeifer, N., & Sanfilippo, G. (submitted). Centering with conjoined and iterated conditionals under coherence.
  33. Gilio, A., Pfeifer, N., & Sanfilippo, G. (2015). Transitive reasoning with imprecise probabilities. In S. Destercke & T. Denoeux (Eds.), Symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU 2015) (pp. 95–105). Dordrecht: Springer LNAI 9161.Google Scholar
  34. Gilio, A., Pfeifer, N., & Sanfilippo, G. (2016). Transitivity in coherence-based probability logic. Journal of Applied Logic, 14, 46–64.MathSciNetCrossRefzbMATHGoogle Scholar
  35. Gilio, A., & Sanfilippo, G. (2011). Coherent conditional probabilities and proper scoring rules. In F. Coolen, G. De Cooman, T. Fetz & M. Oberguggenberger (Eds.), Proceedings of the 7th international symposium on imprecise probability: Theories and applications (pp. 189–198). Innsbruck: SIPTA.Google Scholar
  36. Gilio, A., & Sanfilippo, G. (2013a). Conditional random quantities and iterated conditioning in the setting of coherence. In L. C. van der Gaag (Ed.), ECSQARU 2013 (Vol. 7958, pp. 218–229). Berlin: Springer.Google Scholar
  37. Gilio, A., & Sanfilippo, G. (2013b). Conjunction, disjunction and iterated conditioning of conditional events. In R. Kruse, B. M. R, C. Moewes, M. A. Gil, P. Grzegorzewski, & O. Hryniewicz (Eds.), Synergies of soft computing and statistics for intelligent data analysis (pp. 399–407). Berlin: Springer.Google Scholar
  38. Gilio, A., & Sanfilippo, G. (2013c). Probabilistic entailment in the setting of coherence: The role of quasi conjunction and inclusion relation. International Journal of Approximate Reasoning, 54(4), 513–525.MathSciNetCrossRefzbMATHGoogle Scholar
  39. Gilio, A., & Sanfilippo, G. (2013d). Quasi conjunction, quasi disjunction, t-norms and t-conorms: Probabilistic aspects. Information Sciences, 245, 146–167. doi: 10.1016/j.ins.2013.03.019.MathSciNetCrossRefzbMATHGoogle Scholar
  40. Gilio, A., & Sanfilippo, G. (2014). Conditional random quantities and compounds of conditionals. Studia Logica, 102(4), 709–729.MathSciNetCrossRefzbMATHGoogle Scholar
  41. Ginsberg, M. L. (1986). Counterfactuals. Artificial Intelligence, 30, 35–79.MathSciNetCrossRefzbMATHGoogle Scholar
  42. Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics (Vol. 3: Speech acts). New York: Seminar Press.Google Scholar
  43. Johnson-Laird, P. N., & Tagart, J. (1969). How implication is understood. The American Journal of Psychology, 82(3), 367–373.CrossRefGoogle Scholar
  44. Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllogisms: A meta-analysis. Psychological Bulletin, 138(3), 427–457.CrossRefGoogle Scholar
  45. Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44, 167–207.MathSciNetCrossRefzbMATHGoogle Scholar
  46. Lad, F. (1996). Operational subjective statistical methods: A mathematical, philosophical, and historical introduction. New York: Wiley.zbMATHGoogle Scholar
  47. Lehtinen, T. (1983). Suomen konditionaalin morfologisesta ja semanttisesta motivaatiosta. Virittäjä, 87, 482–507.Google Scholar
  48. Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.zbMATHGoogle Scholar
  49. Lindworsky, J. (1916). Das schlußfolgernde Denken. Experimentellpsychologische Untersuchungen. Freiburg im Breisgau: Herdersche Verlagshandlung.Google Scholar
  50. Macnamara, J. (1986). A border dispute. The place of logic in psychology. Cambridge: MIT Press.Google Scholar
  51. Marr, D. (1982). Vision. A computational investigation into the human representation and processing of visual information. San Francisco: W. H. Freeman.Google Scholar
  52. Mele, A., & Rawling, P. (Eds.). (2004). The Oxford handbook of rationality. New York: Oxford University Press.Google Scholar
  53. Milne, P. (2012). Indicative conditionals, conditional probabilities, and the “defective truth-table”: A request for more experiments. Thinking & Reasoning, 18(2), 196–224.CrossRefGoogle Scholar
  54. Nickerson, R. S. (Ed.). (2008). Aspects of rationality. Reflections on what it means to be rational and whether we are. New York: Psychology Press.Google Scholar
  55. Oaksford, M., & Chater, N. (1994). A rational analysis of the selection task as optimal data selection. Psychological Review, 101, 608–631.CrossRefGoogle Scholar
  56. Oaksford, M., & Chater, N. (2007). Bayesian rationality: The probabilistic approach to human reasoning. Oxford: Oxford University Press.CrossRefGoogle Scholar
  57. Oaksford, M., & Chater, N. (2009). Précis of “Bayesian rationality: The probabilistic approach to human reasoning”. Behavioral and Brain Sciences, 32, 69–120.CrossRefGoogle Scholar
  58. Oaksford, M., Chater, N., & Larkin, J. (2000). Probabilities and polarity biases in conditional inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 883–899.Google Scholar
  59. Over, D. E. (2009). New paradigm psychology of reasoning. Thinking and Reasoning, 15, 431–438.CrossRefGoogle Scholar
  60. Over, D. E., & Baratgin, J. (2017). The “defective” truth table: Its past, present, and future. In N. Galbraith, E. Lucas, & D. E. Over (Eds.), The thinking mind: A Festschrift for Ken Manktelow (pp. 15–28). Hove: Psychology Press.Google Scholar
  61. Over, D. E., Hadjichristidis, C., Evans, J. S. B. T., Handley, S. J., & Sloman, S. (2007). The probability of causal conditionals. Cognitive Psychology, 54, 62–97.CrossRefGoogle Scholar
  62. Pfeifer, N. (2006). Contemporary syllogistics: Comparative and quantitative syllogisms. In G. Kreuzbauer & G. J. W. Dorn (Eds.), Argumentation in Theorie und Praxis: Philosophie und Didaktik des Argumentierens (pp. 57–71). Wien: Lit Verlag.Google Scholar
  63. Pfeifer, N. (2008). A probability logical interpretation of fallacies. In G. Kreuzbauer, N. Gratzl, & E. Hiebl (Eds.), Rhetorische Wissenschaft: Rede und Argumentation in Theorie und Praxis (pp. 225–244). Wien: Lit Verlag.  Google Scholar
  64. Pfeifer, N. (2011). Systematic rationality norms provide research roadmaps and clarity. Commentary on Elqayam & Evans: Subtracting “ought” from “is”: Descriptivism versus normativism in the study of human thinking. Behavioral and Brain Sciences, 34, 263–264.CrossRefGoogle Scholar
  65. Pfeifer, N. (2012). Experiments on Aristotle’s Thesis: Towards an experimental philosophy of conditionals. The Monist, 95(2), 223–240.CrossRefGoogle Scholar
  66. Pfeifer, N. (2013a). The new psychology of reasoning: A mental probability logical perspective. Thinking & Reasoning, 19(3–4), 329–345.CrossRefGoogle Scholar
  67. Pfeifer, N. (2013b). On argument strength. In F. Zenker (Ed.), Bayesian argumentation. The practical side of probability (pp. 185–193). Dordrecht: Synthese Library (Springer).Google Scholar
  68. Pfeifer, N. (2014). Reasoning about uncertain conditionals. Studia Logica, 102(4), 849–866.MathSciNetCrossRefzbMATHGoogle Scholar
  69. Pfeifer, N. (2016). Experimental probabilistic pragmatics beyond Bayes’ theorem. Zeitschrift für Sprachwissenschaft, 35(1), 89–96.CrossRefGoogle Scholar
  70. Pfeifer, N., & Douven, I. (2014). Formal epistemology and the new paradigm psychology of reasoning. The Review of Philosophy and Psychology, 5(2), 199–221.CrossRefGoogle Scholar
  71. Pfeifer, N., & Kleiter, G. D. (2003). Nonmonotonicity and human probabilistic reasoning. In Proceedings of the 6th workshop on uncertainty processing (pp. 221–234). Hejnice: September 24–27, 2003.Google Scholar
  72. Pfeifer, N., & Kleiter, G. D. (2005a). Coherence and nonmonotonicity in human reasoning. Synthese, 146(1–2), 93–109.MathSciNetCrossRefzbMATHGoogle Scholar
  73. Pfeifer, N., & Kleiter, G. D. (2005b). Towards a mental probability logic. Psychologica Belgica, 45(1), 71–99.CrossRefGoogle Scholar
  74. Pfeifer, N., & Kleiter, G. D. (2006a). Inference in conditional probability logic. Kybernetika, 42, 391–404.MathSciNetzbMATHGoogle Scholar
  75. Pfeifer, N., & Kleiter, G. D. (2006b). Is human reasoning about nonmonotonic conditionals probabilistically coherent? In Proceedings of the 7th workshop on uncertainty processing (pp. 138–150). Mikulov: September 16–20, 2006.Google Scholar
  76. Pfeifer, N., & Kleiter, G. D. (2007). Human reasoning with imprecise probabilities: Modus ponens and Denying the antecedent. In G. De Cooman, J. Vejnarová & M. Zaffalon (Eds.), Proceedings of the 5th international symposium on imprecise probability: Theories and applications (pp. 347–356). Prague: SIPTA.Google Scholar
  77. Pfeifer, N., & Kleiter, G. D. (2009a). Framing human inference by coherence based probability logic. Journal of Applied Logic, 7(2), 206–217.MathSciNetCrossRefzbMATHGoogle Scholar
  78. Pfeifer, N., & Kleiter, G. D. (2009b). Mental probability logic. Commentary on Oaksford & Chater: Bayesian rationality. Behavioral and Brain Sciences, 32, 98–99.CrossRefGoogle Scholar
  79. Pfeifer, N., & Kleiter, G. D. (2010). The conditional in mental probability logic. In M. Oaksford & N. Chater (Eds.), Cognition and conditionals: Probability and logic in human thought (pp. 153–173). Oxford: Oxford University Press.  Google Scholar
  80. Pfeifer, N., & Kleiter, G. D. (2011). Uncertain deductive reasoning. In K. Manktelow, D. E. Over, & S. Elqayam (Eds.), The science of reason: A Festschrift for Jonathan St. B.T. Evans (pp. 145–166). Hove: Psychology Press.Google Scholar
  81. Pfeifer, N., & Sanfilippo, G. (2017). Square of opposition under coherence. In M. B. Ferraro (Ed.), Soft methods for data science (pp. 407–414). Berlin: Springer.Google Scholar
  82. Pfeifer, N., & Sanfilippo, G. (submitted). Probabilistic squares and hexagons of opposition under coherence.
  83. Pfeifer, N., & Stöckle-Schobel, R. (2015). Uncertain conditionals and counterfactuals in (non-)causal settings. In G. Arienti, B. G. Bara & S. G. (Eds.), Proceedings of the EuroAsianPacific joint conference on cognitive science (4th European conference on cognitive science; 10th International conference on cognitive science) (Vol. 1419, pp. 651–656). Aachen: CEUR Workshop Proceedings. Retrieved from
  84. Politzer, G., & Baratgin, J. (2015). Deductive schemas with uncertain premises using qualitative probability expressions. Thinking & Reasoning, 22(1), 78–98.CrossRefGoogle Scholar
  85. Quine, W. O. (1950). Methods of logic. New York: Holt.zbMATHGoogle Scholar
  86. Ramsey, F. P. (1929/1994). General propositions and causality (1929). In D. H. Mellor (Ed.), Philosophical papers by F. P. Ramsey (pp. 145–163). Cambridge: Cambridge University Press.Google Scholar
  87. Rott, H. (2014). Unvergleichbarkeit und unabhängige Bedeutung. Zeitschrift für philosophische Forschung, 68, 237–250.CrossRefGoogle Scholar
  88. Schurz, G. (2005). Non-monotonic reasoning from an evolution-theoretic perspective: Ontic, logical and cognitive foundations. Synthese, 1–2, 37–51.MathSciNetCrossRefzbMATHGoogle Scholar
  89. Schurz, G., & Thorn, P. D. (2012). Reward versus risk in uncertain inference: Theorems and simulations. The Review of Symbolic Logic, 5(4), 574–612.MathSciNetCrossRefzbMATHGoogle Scholar
  90. Stanovich, K. E. (1999). Who is rational. Studies of individual differences in reasoning. Mahwah: Erlbaum.Google Scholar
  91. Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 23, 645–726.CrossRefGoogle Scholar
  92. Störring, G. (1908). Experimentelle Untersuchungen zu einfachen Schlußprozessen. Archiv für die Gesamte Psychologie, 11, 1–127.Google Scholar
  93. Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.CrossRefzbMATHGoogle Scholar
  94. Wallmann, C., & Kleiter, G. (2014). Degradation in probability logic: When more information leads to less precise conclusions. Kybernetika, 50(2), 268–283.MathSciNetzbMATHGoogle Scholar
  95. Wason, P. C. (1966). Reasoning. In B. M. Foss (Ed.), New horizons in psychology I (pp. 106–137). Harmandsworth: Penguin.Google Scholar
  96. Wason, P. C., & Johnson-Laird, P. N. (1972). The psychology of reasoning: Structure and content. Cambridge: Harvard University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyLMU MunichMunichGermany
  2. 2.Department of Philosophy, History, Culture and Art StudiesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations