Adams, E. (1965). The logic of conditionals. Inquiry, 8(1–4), 166–197.
Article
Google Scholar
Antoniou, G. (1997). Nonmonotonic reasoning. Cambridge, MA: MIT Press.
MATH
Google Scholar
Baratgin, J., Over, D., & Politzer, G. (2014). New psychological paradigm for conditionals and general de finetti tables. Mind & Language, 29(1), 73–84.
Article
Google Scholar
Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6(1), 57–86.
Article
Google Scholar
Beierle, C., Eichhorn, C., & Kern-Isberner, G. (2016). Sceptical Inference based on C-representation and its characterization as a constraint satisfaction problem. In Proceedings of the 9th International Symposium on Foundations of Information and Knowledge Systems (FoIKS 2016), Lecture Notes of Computer Science (Vol. 9616, pp. 65–82). Berlin, DE: Springer.
Beierle, C., & Kern-Isberner, G. (2014). Methoden wissensbasierter Systeme, 5. überarbeitete und erweiterte Auflage. Wiesbaden, DE: Springer Vieweg (in German).
Bochman, A. (2001). A logical theory of nonmonotonic inference and belief change. Berlin, DE: Springer.
Book
MATH
Google Scholar
Bonnefon, J. F., Da Silva Neves, R., Dubois, D., & Prade, H. (2006). Background default knowledge and causality ascriptions. In: G. Brewka, S. Coradeschi, A. Perini, & P. Traverso (Eds.), Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), Frontiers in Artificial Intelligence and Applications (Vol. 141, pp. 11–15). Amsterdam, NL: IOS Press.
Byrne, R. M. (1989). Suppressing valid inferences with conditionals. Cognition, 31, 61–83.
Article
Google Scholar
Byrne, R. M. (1991). Can valid inferences be suppressed? Cognition, 39(1), 71–78.
Article
Google Scholar
Byrne, R. M., Espino, O., & Santamaria, C. (1999). Counterexamples and the suppression of inferences. Journal of Memory and Language, 40(3), 347–373.
Article
Google Scholar
Da Silva Neves, R., Bonnefon, J. F., & Raufaste, E. (2002). An empirical test of patterns for nonmonotonic inference. Annals of Mathematics and Artificial Intelligence, 34(1–3), 107–130.
MathSciNet
Article
MATH
Google Scholar
Dietz, E., Hölldobler, S., & Ragni, M. (2012). A computational approach to the suppression task. In N. Miyake, D. Peebles, & R. Cooper (Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society (pp. 1500–1505). Austin, TX: Cognitive Science Society.
Dietz, E. A., & Hölldobler, S. (2015). A new computational logic approach to reason with conditionals. In: International conference on logic programming and nonmonotonic reasoning (pp. 265–278). New York: Springer.
Dubois, D., & Prade, H. (1996). Conditional objects as nonmonotonicConsequence relations. In Principles of knowledge representationand reasoning: Proceedings of the 4th international conference (KR’94) (pp. 170–177). San Francisco, CA: Morgan Kaufmann Publishers.
Dubois, D., & Prade, H. (2015). Possibility theory and its applications: Where do we stand?. Berlin: Springer.
Google Scholar
Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–357.
MathSciNet
Article
MATH
Google Scholar
de Finetti, B. (1974). Theory of probability (Vol. 1,2). New York, NY: Wiley.
MATH
Google Scholar
Fitting, M. (1985). A Kripke–Kleene semantics for logic programs. Journal of Logic Programming, 2(4), 295–312.
MathSciNet
Article
MATH
Google Scholar
Gabbay, D. (1985). Theoretical foundations for non-monotonic reasoning in expert systems. In K. R. Apt (Ed.), Logics and models of concurrent systems (pp. 439–457). New York, NY: Springer.
Chapter
Google Scholar
García, A. J., & Simari, G. R. (2004). Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming, 4, 95–138.
MathSciNet
Article
MATH
Google Scholar
Gazzo Castañeda, E. L., & Knauff, M. (2016). Defeasible reasoning with legal conditionals. Memory & Cognition, 44(3), 499–517. doi:10.3758/s13421-015-0574-7.
Article
Google Scholar
Goldszmidt, M., & Pearl, J. (1996). Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artificial Intelligence, 84(1–2), 57–112.
MathSciNet
Article
Google Scholar
Halpern, J. Y. (2005). Reasoning about uncertainty. Cambridge, MA: MIT Press.
MATH
Google Scholar
Hölldobler, S., & Kencana Ramli, C. D. (2009a). Logic programs under three-valued Łukasiewicz semantics. In P. M. Hill, & D. S. Warren (Eds.), Logic programming, 25th international conference, ICLP 2009, LNCS (Vol. 5649, pp. 464–478). Heidelberg: Springer.
Hölldobler, S., & Kencana Ramli, C. D. (2009b). Logics and networks for human reasoning. In C. Alippi, M. M. Polycarpou, C. G.Panayiotou, & G. Ellinas (Eds.), International conference on artificial neural networks, ICANN 2009, part II, LNCS (Vol. 5769, pp. 85–94). Heidelberg: Springer.
Johnson-Laird, P., & Byrne, R. (2002). Conditionals: A theory of meaning, pragmatics, and inference. Psychological Review, 109(4), 646–677.
Article
Google Scholar
Kern-Isberner, G. (2001). Conditionals in nonmonotonic reasoning and belief revision. No. 2087 in LNCS. Berlin, DE: Springer.
Kern-Isberner, G. (2004). A thorough axiomatization of a principle of conditional preservation in belief revision. Annals of Mathematics and Artificial Intelligence, 40, 127–164.
MathSciNet
Article
MATH
Google Scholar
Kern-Isberner, G., & Eichhorn, C. (2012). A structural base for conditional reasoning. In: Human reasoning and automated deduction—KI 2012 workshop proceedings (pp. 25–32).
Klauer, K. C., Singmann, H., & Kellen, D. (2015). Parametric order constraints in multinomial processing tree models: An extension of Knapp and Batchelder (2004). Journal of Mathematical Psychology, 64, 1–7.
MathSciNet
Article
MATH
Google Scholar
Klauer, K. C., Stahl, C., & Erdfelder, E. (2007). The abstract selection task: New data and an almost comprehensive model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 680–703.
Google Scholar
Kleene, S. C. (1952). Introduction to metamathematics. Amsterdam: Bibl. Matematica.
MATH
Google Scholar
Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44(1–2), 167–207.
MathSciNet
Article
MATH
Google Scholar
Kripke, S. A. (1972). Naming and necessity. Cambridge, MA: Harvard University Press.
Book
Google Scholar
Kuhnmünch, G., & Ragni, M. (2014). Can formal non-monotonic systems properly describe human reasoning? In P. Bello, M. Guarini, M. McShane & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society (pp. 1222–1227). Austin, TX: Cognitive Science Society.
Lehmann, D. J., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55(1), 1–60.
MathSciNet
Article
MATH
Google Scholar
Lewis, D. K. (1986). On the plurality of worlds. Hoboken, NJ: Blackwell Publishers.
Google Scholar
Łukasiewicz, J. (1920). O logice trójwartościowej. Ruch Filozoficzny5, 169–171 (1920). English translation: On three-valued logic. In J. Łukasiewicz & L. Borkowski (Eds.) (1990). Selected works (pp. 87–88). Amsterdam: North Holland.
Łukasiewicz, T. (2005). Weak nonmonotonic probabilistic logics. Artificial Intelligence, 168(1–2), 119–161.
MathSciNet
Article
MATH
Google Scholar
Makinson, D. (1994). General patterns in nonmonotonic reasoning. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming (Vol. 3, pp. 35–110). New York, NY: Oxford University Press.
Google Scholar
Oaksford, M., & Chater, N. (2007). Bayesian rationality: The probabilistic approach to human reasoning. Oxford: Oxford University Press.
Book
Google Scholar
Oaksford, M., & Chater, N. (2016). Probabilities, causation, and logic programming in conditional reasoning: Reply to Stenning and van Lambalgen. Thinking & Reasoning, 22(3), 336–354.
Article
Google Scholar
Pearl, J. (1990). System Z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. In R. Parikh (Ed.), Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge (TARK1990) (pp. 121–135). San Francisco, CA: Morgan Kaufmann Publishers Inc.
Pfeifer, N., & Kleiter, G. D. (2005). Coherence and nonmonotonicity in human reasoning. Synthese, 146(1–2), 93–109.
MathSciNet
Article
MATH
Google Scholar
Politzer, G. (2005). Uncertainty and the suppression of inferences. Thinking & Reasoning, 11(1), 5–33.
MathSciNet
Article
Google Scholar
Ragni, M., Eichhorn, C., & Kern-Isberner, G. (2016). Simulating human inferences in the light of new information: A formal analysis. In S. Kambhampati (Ed.). Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16) (pp. 2604–2610).
Ragni, M., & Knauff, M. (2013). A theory and a computational model of spatial reasoning with preferred mental models. Psychological Review, 120(3), 561–588.
Article
Google Scholar
Ragni, M., Singmann, H., & Steinlein, E. M. (2014). Theory comparison for generalized quantifiers. In P. Bello, M. Guarini, M. McShane & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society (pp. 1330–1335). Austin, TX: Cognitive Science Society.
Ramsey, F. P. (1929). General propositions and causality. In Philosophical papers (pp. 145–163). Cambridge, UK: Cambridge University Press.
Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1–2), 81–132.
MathSciNet
Article
MATH
Google Scholar
Singmann, H., & Kellen, D. (2013). MPTinR: Analysis of multinomial processing tree models in R. Behavior Research Methods, 45(2), 560–575.
Article
Google Scholar
Skovgaard-Olsen, N., Singmann, H., & Klauer, K. C. (2016). The relevance effect and conditionals. Cognition, 150, 26–36.
Article
Google Scholar
Spohn, W. (1988). Ordinal conditional functions: A dynamic theory of epistemic states. In Causation in decision, belief change and statistics: Proceedings of the Irvine Conference on Probability and Causation, the Western Ontario Series in Philosophy of Science (Vol. 42, pp. 105–134). Dordrecht, NL: Springer.
Spohn, W. (2012). The laws of belief: Ranking theory and its philosophical applications. Oxford, UK: Oxford University Press.
Book
Google Scholar
Stenning, K., & Lambalgen, M. (2008). Human reasoning and cognitive science. Cambridge, MA: MIT Press.
Google Scholar
Thorn, P. D., Eichhorn, C., Kern-Isberner, G., & Schurz, G. (2015). Qualitative probabilistic inference with default inheritance for exceptional subclasses. In C. Beierle, G. Kern-Isberner, M. Ragni, & F. Stolzenburg (Eds.), Proceedings of the 5th Workshop on Dynamics of Knowledge and Belief (DKB-2015) and the 4th Workshop KI & Kognition (KIK-2015) co-located with 38th German Conference on Artificial Intelligence (KI-2015), CEUR Workshop Proceedings (Vol. 1444).
Wason, P. C. (1968). Reasoning about a rule. Quarterly Journal of Experimental Psychology, 20(3), 273–281.
Article
Google Scholar