Advertisement

Minds and Machines

, Volume 26, Issue 4, pp 409–440 | Cite as

The Dynamics of Group Cognition

  • S. Orestis PalermosEmail author
Article

Abstract

The aim of this paper is to demonstrate that the postulation of irreducible, distributed cognitive systems (or group minds as they are also known in the literature) is necessary for the successful explanatory practice of cognitive science and sociology. Towards this end, and with an eye specifically on the phenomenon of distributed cognition, the debate over reductionism versus emergence is examined from the perspective of Dynamical Systems Theory (DST). The motivation for this novel approach is threefold. Firstly, DST is particularly popular amongst cognitive scientists who work on modelling collective behaviors. Secondly, DST can deliver two distinct arguments in support of the claim that the presence of mutual interactions between group members necessitates the postulation of the corresponding group entity. Thirdly, DST can also provide a succinct understanding of the way group entities exert downward causation on their individual members. The outcome is a naturalist account of the emergent, and thereby irreducible, nature of distributed cognitive systems that avoids the reductionists’ threat of epiphenomenalism, while being well in line with materialism.

Keywords

Distributed cognition Dynamical Systems Theory Emergence Downward causation 

Notes

Acknowledgments

I am thankful to Adam Carter for comments on an early draft of the paper. I am also thankful to two anonymous referees for Minds and Machines. This paper was produced as part of the AHRC-funded ‘Extended Knowledge’ research project (AH/J011908/1), which was hosted at Edinburgh’s Eidyn Research Centre.

References

  1. Abraham, F. S., Abraham, R. H., & Shaw, C. (1990). A visual introduction to dynamical systems theory for psychology. Santa Cruz, CA: Aerial Pr.zbMATHGoogle Scholar
  2. Adams, F., & Aizawa, K. (2001). The bounds of cognition. Philosophical Psychology, 14(1), 43–64.CrossRefGoogle Scholar
  3. Adams, F., & Aizawa, K. (2008). The bounds of cognition. Oxford: Blackwell Publishing Ltd.Google Scholar
  4. Adams, F., & Aizawa, K. (2010). Defending the bounds of cognition. In R. Menary (Ed.), The extended mind. Cambridge, MA: MIT Press.Google Scholar
  5. Arrow, H., McGrath, J., & Berdahl, J. (2000). Small groups as complex systems: Formation, coordination, development, and adaptation. London: Sage Publications.Google Scholar
  6. Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Jelic, A., Melillo, S., et al. (2015). Emergence of collective changes in travel direction of starling flocks from individual birds’ fluctuations. Journal of the Royal Society, Interface, 12(108), 20150319.CrossRefGoogle Scholar
  7. Barnier, A. J., Sutton, J., Harris, C. B., & Wilson, R. A. (2008). A conceptual and empirical framework for the social distribution of cognition: The case of memory. Cognitive Systems Research, 9(1–2), 33–51. doi: 10.1016/j.cogsys.2007.07.002.CrossRefGoogle Scholar
  8. Becco, C., Vandewalle, N., Delcourt, J., & Poncin, P. (2006). Experimental evidences of a structural and dynamical transition in fish school. Physica A: Statistical Mechanics and its Applications, 367, 487–493.CrossRefGoogle Scholar
  9. Beckermann, A., Flohr, H., & Kim, J. (1992). Emergence or Reduction?: Essays on the Prospects of Nonreductive Physicalism. New York: Walter de Gruyter.CrossRefGoogle Scholar
  10. Beer, R. D. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72(1–2), 173–215. doi: 10.1016/0004-3702(94)00005-L.CrossRefGoogle Scholar
  11. Bickle, J. (2013). Multiple realizability. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2013). Retrieved from http://plato.stanford.edu/archives/spr2013/entries/multiple-realizability/.
  12. Bonabeau, E., & Meyer, C. (2001). Swarm intelligence: A whole new way to think about business. Harvard Business Review, 79(5), 106–115.Google Scholar
  13. Bressler, S. L., & Kelso, J. A. S. (2001). Cortical coordination dynamics and cognition. Trends in Cognitive Sciences, 5(1), 26–36. doi: 10.1016/S1364-6613(00)01564-3.CrossRefGoogle Scholar
  14. Campbell, D. T. (1974). Downward causation in hierarchically organised biological systems. In F. J. Ayala & T. Dobzhansky (Eds.), Studies in the philosophy of biology: Reduction and related problems. London: Macmillan.Google Scholar
  15. Campbell, R. J., & Bickhard, M. H. (2011). Physicalism, emergence and downward causation. Axiomathes, 21(1), 33–56.CrossRefGoogle Scholar
  16. Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.Google Scholar
  17. Clark, A. (2010). Coupling, constitution, and the cognitive kind: A reply to Adams and Aizawa. In R. Menary (Ed.), The extended mind. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  18. Coey, C. A., Varlet, M., & Richardson, M. J. (2012). Coordination dynamics in a socially situated nervous system. Frontiers in human neuroscience, 6, 164.CrossRefGoogle Scholar
  19. Cooke, N. J., Gorman, J. C., Myers, C. W., & Duran, J. L. (2013). Interactive team cognition. Cognitive science, 37(2), 255–285.CrossRefGoogle Scholar
  20. Corradini, A., & O’Connor, T. (Eds.). (2010). Emergence in science and philosophy. New York: Routledge.Google Scholar
  21. Craver, C. F., & Bechtel, W. (2007). Top-down causation without top-down causes. Biology and Philosophy, 22(4), 547–563. doi: 10.1007/s10539-006-9028-8.CrossRefGoogle Scholar
  22. Dale, R., Fusaroli, R., Duran, N., & Richardson, D. C. (2013). The self-organization of human interaction. Psychology of Learning and Motivation, 59, 43–95.CrossRefGoogle Scholar
  23. Dale, R., & Spivey, M. J. (2006). Unraveling the dyad: Using recurrence analysis to explore patterns of syntactic coordination between children and caregivers in conversation. Language Learning, 56(3), 391–430. doi: 10.1111/j.1467-9922.2006.00372.x.CrossRefGoogle Scholar
  24. Davidson, D. (1995). Laws and cause. Dialectica, 49(2–4), 263–280. doi: 10.1111/j.1746-8361.1995.tb00165.x.Google Scholar
  25. Davidson, D. (2002). Essays on Actions and Events: Philosophical Essays Volume 1 (New Ed edition.). Oxford: Clarendon Press.Google Scholar
  26. Dennett, D. C. (1993). Consciousness explained (New Ed edition). London: Penguin.Google Scholar
  27. Duarte, R., Araújo, D., Correia, V., & Davids, K. (2012). Sports teams as superorganisms. Sports Medicine, 42(8), 633–642.CrossRefGoogle Scholar
  28. Duarte, R., Araújo, D., Correia, V., Davids, K., Marques, P., & Richardson, M. J. (2013a). Competing together: Assessing the dynamics of team–team and player–team synchrony in professional association football. Human Movement Science, 32(4), 555–566.CrossRefGoogle Scholar
  29. Duarte, R., Araújo, D., Folgado, H., Esteves, P., Marques, P., & Davids, K. (2013b). Capturing complex, non-linear team behaviours during competitive football performance. Journal of Systems Science and Complexity, 26(1), 62–72.CrossRefGoogle Scholar
  30. Emmeche, C., Køppe, S., & Stjernfelt, F. (2000). Levels, emergence, and three versions of downward causation. In P. B. Andersen, C. Emmeche, N. O. Finnemann & P. V. Christiansen (Eds.), Downward causation. Minds, bodies and matter (pp. 13–34). Aarhus: Aarhus University Press.Google Scholar
  31. Fodor, J. (1997). Special sciences: Still autonomous after all these years. Noûs, 31, 149–163.CrossRefGoogle Scholar
  32. Fodor, J. A. (1974). Special sciences (or: The disunity of science as a working hypothesis). Synthese, 28(2), 97–115.CrossRefGoogle Scholar
  33. Froese, T., Gershenson, C., & Rosenblueth, D. A. (2013). The dynamically extended mindA minimal modeling case study. arXiv:1305.1958 [nlin]. Retrieved from http://arxiv.org/abs/1305.1958.
  34. Fusaroli, R., Gangopadhyay, N., & Tylén, K. (2014a). The dialogically extended mind: Language as skilful intersubjective engagement. Cognitive Systems Research, 29, 31–39.CrossRefGoogle Scholar
  35. Fusaroli, R., Rączaszek-Leonardi, J., & Tylén, K. (2014b). Dialog as interpersonal synergy. New Ideas in Psychology, 32, 147–157.CrossRefGoogle Scholar
  36. Fusaroli, R., & Tylén, K. (2014). Linguistic coordination: Models, dynamics and effects. New Ideas in Psychology, 32, 115–117.Google Scholar
  37. Fusaroli, R., & Tylén, K. (2016). Investigating conversational dynamics: Interactive alignment, Interpersonal synergy, and collective task performance. Cognitive Science, 40(1), 145–171.Google Scholar
  38. Giere, R. (2002a). Discussion note: Distributed cognition in epistemic cultures. Philosophy of Science, 69(4), 637–644.CrossRefGoogle Scholar
  39. Giere, R. (2002b). Scientific cognition as distributed cognition. In P. Carruthers, S. Stitch & M, Siegal (Eds.), Cognitive bases of science. Cambridge: Cambridge University Press.Google Scholar
  40. Graham, G. (2015). Behaviorism. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2015 Edition). http://plato.stanford.edu/archives/spr2015/entries/behaviorism.
  41. Harris, C. (2010). Collaborative remembering: When can remembering with others be beneficial? (pp. 131–134). Macquarie Centre for Cognitive Science. doi: 10.5096/ASCS200921.
  42. Heylighen, F., Heath, M., & Van, F. (2004). The Emergence of Distributed cognition: A conceptual framework. In Proceedings of Collective Intentionality IV.Google Scholar
  43. Hollingshead, A. B. (1998a). Communication, learning, and retrieval in transactive memory systems. Journal of Experimental Social Psychology, 34(5), 423–442. doi: 10.1006/jesp.1998.1358.CrossRefGoogle Scholar
  44. Hollingshead, A. B. (1998b). Retrieval processes in transactive memory systems. Journal of Personality and Social Psychology, 74(3), 659–671. doi: 10.1037/0022-3514.74.3.659.CrossRefGoogle Scholar
  45. Hollingshead, A. B., & Brandon, D. P. (2003). Potential benefits of communication in transactive memory systems. Human Communication Research, 29(4), 607–615. doi: 10.1111/j.1468-2958.2003.tb00859.x.CrossRefGoogle Scholar
  46. Huebner, B. (2013). Macrocognition: Distributed minds and collective intentionality. New York: Oxford University Press.CrossRefGoogle Scholar
  47. Humphreys, Paul. (1997a). How properties emerge. Philosophy of Science, 64, 1–17.CrossRefGoogle Scholar
  48. Humphreys, Paul. (1997b). Emergence, not supervenience. Philosophy of Science, 64, S337–S345.CrossRefGoogle Scholar
  49. Hutchins, E. (1996). Cognition in the wild (New edition). Cambridge, MA: MIT Press.Google Scholar
  50. Kelso, J. S. (1997). Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT press.Google Scholar
  51. Kelso, J. A. S., & Engstrøm, D. A. (2008). The complementary nature. London: A Bradford Book.Google Scholar
  52. Kim, J. (1984). Epiphenomenal and supervenient causation. Midwest Studies in Philosophy, 9(1), 257–270.CrossRefGoogle Scholar
  53. Kim, J. (1989). Mechanism, purpose, and explanatory exclusion. Philosophical Perspectives, 3, 77–108. doi: 10.2307/2214264.CrossRefGoogle Scholar
  54. Kim, J. (1993). Supervenience and Mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  55. Kim, J. (1997). Does the problem of mental causation generalize?. In Proceedings of the Aristotelian Society (pp. 281–297).Google Scholar
  56. Kim, J. (1999). Making sense of emergence. Philosophical Studies, 95(1–2), 3–36. doi: 10.1023/A:1004563122154.CrossRefGoogle Scholar
  57. Knorr-Cetina, K. (1999). Epistemic cultures: How the sciences make knowledge. Cambridge: Harvard University Press.Google Scholar
  58. Lewis, K. (2003). Measuring transactive memory systems in the field: Scale development and validation. The Journal of Applied Psychology, 88(4), 587–604.CrossRefGoogle Scholar
  59. Li, L., Peng, H., Kurths, J., Yang, Y., & Schellnhuber, H. J. (2014). Chaos-order transition in foraging behavior of ants. Proceedings of the National Academy of Sciences, Early Edition,. doi: 10.1073/pnas.1407083111.Google Scholar
  60. Li, L., Yang, Y., & Peng, H. (2009). Fuzzy system identification via chaotic ant swarm. Chaos, Solitons & Fractals, 41(1), 401–409.zbMATHCrossRefGoogle Scholar
  61. Ludwig, K. (2015). Is distributed cognition group level cognition? Journal of Social Ontology, 1(2), 189–224.MathSciNetCrossRefGoogle Scholar
  62. Luisi, P. L. (2002). Emergence in chemistry: Chemistry as the embodiment of emergence. Foundations of Chemistry, 4(3), 183–200. doi: 10.1023/A:1020672005348.CrossRefGoogle Scholar
  63. Marsh, K. L., Richardson, M. J., & Schmidt, R. C. (2009). Social connection through joint action and interpersonal coordination. Topics in Cognitive Science, 1(2), 320–339.CrossRefGoogle Scholar
  64. McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et al. (2010). Letting structure emerge: connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14(8), 348–356.CrossRefGoogle Scholar
  65. McClelland, J. L., Rumelhart, D. E., & Hinton, G. E. (1986). The appeal of parallel distributed processing (pp. 3–44). Cambridge, MA: MIT Press.Google Scholar
  66. McGrath, J. E., Arrow, H., & Berdahl, J. L. (2000). The study of groups: Past, present, and future. Personality and Social Psychology Review, 4(1), 95–105. doi: 10.1207/S15327957PSPR0401_8.CrossRefGoogle Scholar
  67. Menary, R. (2006). Attacking the bounds of cognition. Philosophical Psychology, 19(3), 329–344.CrossRefGoogle Scholar
  68. Minsky, M. (1988). The society of mind (Pages Bent edition). New York: Pocket Books.Google Scholar
  69. Moreland, R. (1999). Transactive memory: Learning who knows what in work groups and organizations. In L. Thompson, J. Levine, & D. Messick (Eds.), (pp. 3–31). Lawrence Erlbaum Associates Publishers.Google Scholar
  70. Morganti, M. (2009). A new look at relational holism in quantum mechanics. Philosophy of Science, 76(5), 1027–1038.CrossRefGoogle Scholar
  71. Murphy, N., Ellis, G., & O’Connor, T. (Eds.). (2009). Downward causation and the neurobiology of free will. Berlin: Springer.Google Scholar
  72. Nersessian, N. J. (2006). The cognitive-cultural systems of the research laboratory. Organization Studies, 27(1), 125–145.MathSciNetCrossRefGoogle Scholar
  73. Niwa, H. S. (1994). Self-organizing dynamic model of fish schooling. Journal of Theoretical Biology, 171(2), 123–136.MathSciNetCrossRefGoogle Scholar
  74. O’Connor, T., & Wong, H. Y. (2012). Emergent properties. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2012). Retrieved from http://plato.stanford.edu/archives/spr2012/entries/properties-emergent/.
  75. Obuko, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Advances in Biophysics, 22, 1–94.CrossRefGoogle Scholar
  76. O’Connor, Timothy. (1994). Emergent properties. American Philosophical Quarterly, 31, 91–104.Google Scholar
  77. Palermos, S. O. (2014). Loops, constitution, and cognitive extension. Cognitive Systems Research, 27, 25–41.CrossRefGoogle Scholar
  78. Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books Inc.Google Scholar
  79. Parunak, H. V. D. (1997). “ Go to the ant”: Engineering principles from natural multi-agent systems. Annals of Operations Research, 75, 69–101.zbMATHCrossRefGoogle Scholar
  80. Peng, H., Li, L., Yang, Y., & Liu, F. (2010). Parameter estimation of dynamical systems via a chaotic ant swarm. Physical Review E, 81(1), 016207.CrossRefGoogle Scholar
  81. Pitt, D. (2013). Mental representation. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2013 Edition). http://plato.stanford.edu/archives/fall2013/entries/mental-representation/.
  82. Port, R. F., & Van Gelder, T. (1995). Mind as motion: Explorations in the dynamics of cognition. Cambridge: MIT press.Google Scholar
  83. Raczaszek-Leonardi, J., & Kelso, J. A. S. (2008). Reconciling symbolic and dynamic aspects of language. New Ideas in Psychology, 26(2), 193–207. doi: 10.1016/j.newideapsych.2007.07.003.CrossRefGoogle Scholar
  84. Richardson, M., Dale, R., & March, L. (2014). Complex dynamical systems in social and personality psychology. Handbook of research methods in social and personality psychology, 253.Google Scholar
  85. Riley, M. A., Richardson, M. J., Shockley, K., & Ramenzoni, V. C. (2011). Interpersonal synergies. Frontiers in Psychology, 2, 38.CrossRefGoogle Scholar
  86. Rodriguez, E., George, N., Lachaux, J.-P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 397(6718), 430–433. doi: 10.1038/17120.CrossRefGoogle Scholar
  87. Ross, D., & Ladyman, J. (2010). The alleged coupling-constitution fallacy and the mature sciences. In R. Menary (Ed.), The extended mind. Cambridge, MA: MIT Press.Google Scholar
  88. Ruben, D.-H. (1985). The Metaphysics of the social world. London: Routledge.Google Scholar
  89. Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. (1986). Sequential thought processes in PDP models. V, 2, 3–57.Google Scholar
  90. Rupert, R. (2005). Minding one’s cognitive systems: When does a group of minds constitute a single cognitive unit? Episteme: A Journal of Social Epistemology, 1, 177–188.CrossRefGoogle Scholar
  91. Rupert, R. D. (2011). Empirical arguments for group minds: A critical appraisal. Philosophy Compass, 6(9), 630–639.CrossRefGoogle Scholar
  92. Rupert, R. (forthcoming a). Individual minds as groups, group minds as individuals (University of Colorado, Boulder). In B. Kaldis (Ed.), Mind and society: Cognitive science meets the philosophy of the social sciences, Synthese Library Special Volume.Google Scholar
  93. Rupert, R. (forthcoming b). Against group cognitive states. In S. Chant, F. Hindriks, & G. Preyer (Eds.), From individual to collective intentionality. Oxford: Oxford University Press.Google Scholar
  94. Sawyer, R. K. (2001). Emergence in sociology: Contemporary philosophy of mind and some implications for sociological theory. American Journal of Sociology, 107(3), 551–585. doi: 10.1086/338780.CrossRefGoogle Scholar
  95. Sawyer, R. K. (2002). Nonreductive individualism part I—Supervenience and wild disjunction. Philosophy of the Social Sciences, 32(4), 537–559. doi: 10.1177/004839302237836.MathSciNetCrossRefGoogle Scholar
  96. Sawyer, R. K. (2003). Nonreductive individualism part II—Social causation. Philosophy of the Social Sciences, 33(2), 203–224. doi: 10.1177/0048393103033002003.MathSciNetCrossRefGoogle Scholar
  97. Schmidt, R. C., Bienvenu, M., Fitzpatrick, P. A., & Amazeen, P. G. (1998). A comparison of intra-and interpersonal interlimb coordination: coordination breakdowns and coupling strength. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 884.Google Scholar
  98. Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal coordination. In Coordination: Neural, behavioral and social dynamics (pp. 281–308). Berlin: Springer.Google Scholar
  99. Sellars, W. (1963). Philosophy and the Scientic Image of Man. Science, perception, and reality (pp. 1–40). New York: Routledge & Kegan Paul.Google Scholar
  100. Spivey, M. (2007). The continuity of mind. Oxford: Oxford University Press.Google Scholar
  101. Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time cognition. Current Directions in Psychological Science, 15(5), 207–211. doi: 10.1111/j.1467-8721.2006.00437.x.CrossRefGoogle Scholar
  102. Stephan, A. (1999). Varieties of emergence. Evolution and Cognition, 5(1), 50–59.Google Scholar
  103. Stephan, A. (2006). The dual role of ‘emergence’ in the philosophy of mind and in cognitive science. Synthese, 151(3), 485–498.CrossRefGoogle Scholar
  104. Stoljar, D. (2015). Physicalism. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Retrieved from http://plato.stanford.edu/archives/fall2009/entries/physicalism/.
  105. Sutton, J. (2008). Between individual and collective memory: Interaction, coordination, distribution. Social Research, 75(1), 23–48.Google Scholar
  106. Sutton, J., Harris, C. B., Keil, P. G., & Barnier, A. J. (2010). The psychology of memory, extended cognition, and socially distributed remembering. Phenomenology and the Cognitive Sciences, 9(4), 521–560. doi: 10.1007/s11097-010-9182-y.CrossRefGoogle Scholar
  107. Teller, P. (1986). Relational holism and quantum mechanics. British Journal for the Philosophy of Science, 37(1), 71–81.MathSciNetGoogle Scholar
  108. Theiner, G. (2013a). Onwards and upwards with the extended mind: From individual to collective epistemic action. In L. Caporael, J. Griesemer, & W. Wimsatt (Eds.), Developing scaffolds (pp. 191–208). Cambridge: MIT Press.CrossRefGoogle Scholar
  109. Theiner, G. (2013b). Transactive memory systems: A mechanistic analysis of emergent group memory. Review of Philosophy and Psychology, 4(1), 65–89. doi: 10.1007/s13164-012-0128-x.CrossRefGoogle Scholar
  110. Theiner, G. (forthcoming). Group-Sized Distributed Cognitive Systems. In Ludwig, K. & Jankovic, M. (Eds), The Routledge handbook of collective intentionality, New York: Routledge.Google Scholar
  111. Theiner, G., Allen, C., & Goldstone, R. L. (2010). Recognizing group cognition. Cognitive Systems Research, 11(4), 378–395. doi: 10.1016/j.cogsys.2010.07.002.CrossRefGoogle Scholar
  112. Theiner, G., & O’Connor, T. (2010). The emergence of group cognition. In Corradini, A., & O’Connor, T. (Eds.), Emergence in science and philosophy. Routledge.Google Scholar
  113. Thelen, E., & Smith, L. B. (1996). A dynamic systems approach to the development of cognition and action. Cambridge: MIT press.Google Scholar
  114. Thompson, E., & Varela, F. J. (2001). Radical embodiment: neural dynamics and consciousness. Trends in Cognitive Sciences, 5(10), 418–425.CrossRefGoogle Scholar
  115. Tollefsen, D. P. (2006). From extended mind to collective mind. Cognitive Systems Research, 7(2–3), 140–150. doi: 10.1016/j.cogsys.2006.01.001.CrossRefGoogle Scholar
  116. Tollefsen, D. P. (2015). Groups as agents. New York: Wiley.Google Scholar
  117. Tollefsen, D., & Dale, R. (2012). Naturalizing joint action: A process-based approach. Philosophical Psychology, 25(3), 385–407. doi: 10.1080/09515089.2011.579418.CrossRefGoogle Scholar
  118. Turnstrøm, K., Katz, Y., Ioannou, C. C., Huepe, C., Lutz, M. J., & Couzin, I. D. (2013). Collective states, multistability and transitional behavior in schooling fish. PLoS Computational Biology, 9(2), e1002915.MathSciNetCrossRefGoogle Scholar
  119. Turvey, M. T. (1990). Coordination. American Psychologist, 45(8), 938.CrossRefGoogle Scholar
  120. Tylén, K., Fusaroli, R., Bundgaard, P. F., & Østergaard, S. (2013). Making sense together: A dynamical account of linguistic meaning-making. Semiotica, 2013(194), 39–62.CrossRefGoogle Scholar
  121. van Gelder, T. (1995). What might cognition be if not computation? Journal of Philosophy, 92(7), 345–381.CrossRefGoogle Scholar
  122. Varela, F. J. (1993). The embodied mind: Cognitive science and human experience (New ed.). Cambridge, MA: MIT Press.Google Scholar
  123. Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239. doi: 10.1038/35067550.CrossRefGoogle Scholar
  124. Varela, F. J., & Singer, W. (1987). Neuronal dynamics in the visual corticothalamic pathway revealed through binocular rivalry. Experimental Brain Research, 66(1), 10–20.CrossRefGoogle Scholar
  125. Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.MathSciNetCrossRefGoogle Scholar
  126. Warren, W. H., & Fajen, B. R. (2004). Behavioral dynamics of human locomotion. Ecological Psychology, 16(1), 61–66.CrossRefGoogle Scholar
  127. Wegner, D. M. (1986). Theories of group behavior. New York: Springer.Google Scholar
  128. Wegner, D. M. (1995). A computer network model of human transactive memory. Social Cognition13, 319–339.CrossRefGoogle Scholar
  129. Wegner, D. M., Giuliano, T., & Hertel, P. T. (1985). Cognitive interdependence in close relationships. In D. W. Ickes (Ed.), Compatible and incompatible relationships (pp. 253–276). New York: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4612-5044-9_12.
  130. Wegner, D. M., Erber, R. & Raymond, P. (1991). Transactive memory in close relationships. Journal of Personality and Social Psychology, 61, 923–929.CrossRefGoogle Scholar
  131. Wilson, R. A. (2001). Group-level cognition. Philosophy of Science, 68(3), 262–273.CrossRefGoogle Scholar
  132. Wilson, R. A. (2005). Collective memory, group minds, and the extended mind thesis. Cognitive Processing, 6(4), 227–236. doi: 10.1007/s10339-005-0012-z.CrossRefGoogle Scholar
  133. Wilson, J. (2013). Nonlinearity and metaphysical emergence. In S. Mumford & M. Tugby (Eds.), Metaphysics and Science.Google Scholar
  134. Wilson, J. (forthcoming). Metaphysical emergence: Weak and strong. In T. Bigaj & C. Wuthrich (Eds.), Metaphysics in contemporary physics. Poznan Studies in the Philosophy of the Sciences and the Humanities.Google Scholar
  135. Wimsatt, W. C. (1986). Forms of aggregativity. In M. G. Grene, A. Donagan, A. N. Perovich, & M. V. Wedin (Eds.), Human nature and natural knowledge (pp. 259–291). Dordrecht: Reidel.CrossRefGoogle Scholar
  136. Wimsatt, W. C. (2000). Emergence as non-aggregativity and the biases of reductionisms. Foundations of Science, 5(3), 269–297. doi: 10.1023/A:1011342202830.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of EdinburghEdinburghUK

Personalised recommendations