Emergence and Fundamentality in a Pancomputationalist Universe

Abstract

The aim of this work is to apply information theoretic ideas to the notion of fundamentality. I will argue that if one adopts pancomputationalism (the idea that the world is a computer of some sort) as a metaphysics for the universe, then there are higher-level structures which are just as fundamental for computation as anything from microphysics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aaronson, S. (2005). Guest column: NP-complete problems and physical reality. ACM Sigact News, 36(1), 30–52.

    Article  Google Scholar 

  2. Baker, A. (2009). Mathematical explanation in science. The British Journal for the Philosophy of Science, 60(3), 611–663.

    MathSciNet  Article  MATH  Google Scholar 

  3. Balaguer, M. (1996). A fictionalist account of the indispensable applications of mathematics. Philosophical Studies, 83(3), 291–314.

    MathSciNet  Article  Google Scholar 

  4. Barahona, F. (1982). On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 15(10), 3241.

    MathSciNet  Article  Google Scholar 

  5. Barnes, E. (2012). Emergence and fundamentality. Mind, 121(484), 873–901.

    Article  Google Scholar 

  6. Bekenstein, J. (1981). Universal bound on the entropy to energy ratio for bounded systems. Physical Review D, 23, 287–298.

    MathSciNet  Article  Google Scholar 

  7. Berger, B., & Leighton, T. (1998). Protein folding in the hydrophobic–hydrophilic (HP) model is NP-complete. Journal of Computational Biology, 5(1), 27–40.

    Article  Google Scholar 

  8. Berto, F., & Tagliabue, J. (2014). The world is either digital or analogue. Synthese, 191(3), 481–497.

    MathSciNet  Article  Google Scholar 

  9. Bueno, O., & Colyvan, M. (2011). An inferential conception of the application of mathematics. Noûs, 45(2), 345–374.

    MathSciNet  Article  Google Scholar 

  10. Bueno, O., & French, S. (2012). Can mathematics explain physical phenomena? The British Journal for the Philosophy of Science, 63(1), 85–113.

    MathSciNet  Article  MATH  Google Scholar 

  11. Chaitin, G. J. (1969). On the length of programs for computing finite binary sequences: Statistical considerations. Journal of the ACM (JACM), 16(1), 145–159.

    MathSciNet  Article  MATH  Google Scholar 

  12. Chaitin, G. (2003). Two philosophical applications of algorithmic information theory. In C. S. Calude, M. J. Dinneen & V. Vajnovszki (Eds.), Discrete mathematics and theoretical computer science (pp. 1–10). Berlin: Springer.

    Google Scholar 

  13. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., & Yannakakis, M. (1998). On the complexity of protein folding. Journal of Computational Biology, 5(3), 423–465.

    Article  Google Scholar 

  14. Davies, P. C. W. (2004). Emergent biological principles and the computational properties of the universe: Explaining it or explaining it away. Complexity, 10(2), 11–15.

    Article  Google Scholar 

  15. Davies, P. C. W.(2007). The implications of a cosmological information bound for complexity, quantum information and the nature of physical law. Fluctuation and Noise Letters, 7(04), C37–C50.

    Article  Google Scholar 

  16. Davies, P. C. W. (2010). The implications of a holographic universe for quantum information science and the nature of physical law. http://www.ctnsstars.org/conferences/papers/Holographic%20universe%20and%20information.pdf.

  17. Fasman, G. D. (1989). Prediction of protein structure and the principles of protein conformation. New York: Plenum.

    Google Scholar 

  18. Field, H. (1989). Realism, mathematics & modality. Blackwell: Oxford.

    Google Scholar 

  19. Floridi, L. (2009). Against digital ontology. Synthese, 168(1), 151–178.

    Article  MATH  Google Scholar 

  20. Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.

    Google Scholar 

  21. Fraenkel, A. S. (1993). Complexity of protein folding. Bulletin of Mathematical Biology, 55(6), 1199–1210.

    Article  MATH  Google Scholar 

  22. Fredkin, E. (2003). An introduction to digital philosophy. International Journal of Theoretical Physics, 42(2), 189–247.

    MathSciNet  Article  MATH  Google Scholar 

  23. Frege, G. (1953), Foundations of arithmetic. Oxford: Blackwell. Translated by J. L. Austin.

  24. Gough, M. P. (2013). Holographic dark information energy: Predicted dark energy measurement. Entropy, 15(3), 1135–1151.

    Article  Google Scholar 

  25. Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1(1), 1–7.

    MathSciNet  Google Scholar 

  26. Landauer, R. (1996). The physical nature of information. Physics Letters A, 217(4), 188–193.

    MathSciNet  Article  MATH  Google Scholar 

  27. Leng, M. (2002). What’s wrong with indispensability? (Or the case for recreational mathematics). Synthese, 131, 395–417.

    MathSciNet  Article  MATH  Google Scholar 

  28. Lesne, A. (2007). The discrete versus continuous controversy in physics. Mathematical Structures in Computer Science, 17(02), 185–223.

    MathSciNet  Article  MATH  Google Scholar 

  29. Levin, M., & Wen, X. G. (2005). Colloquium: photons and electrons as emergent phenomena. Reviews of modern physics, 77(3), 871.

    Article  Google Scholar 

  30. Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88(23), 237901.

    Article  Google Scholar 

  31. Luisi, P. L. (2002). Emergence in chemistry: Chemistry as the embodiment of emergence. Foundations of Chemistry, 4(3), 183–200.

    Article  Google Scholar 

  32. McAllister, J. W. (2013). Empirical evidence that the world is not a computer. In M. Emmer (Ed.),Imagine math 2 (pp. 127–135). Milan: Springer.

    Google Scholar 

  33. Ming, L., & Vitányi, P. (1997). An introduction to Kolmogorov complexity and its applications. Heidelberg: Springer.

    Google Scholar 

  34. Pincock, C. (2004). A revealing flaw in colyvan’s indispensability argument. Philosophy of Science, 71, 61–79.

    MathSciNet  Article  Google Scholar 

  35. Pincock, C. (2007). A role for mathematics in the physical sciences. Nous, 41(2), 253–275.

    MathSciNet  Article  Google Scholar 

  36. Rimratchada, S., McLeish, T. C. B., Radford, S. E., & Paci, E.(2014). The role of high-imensional diffusive search, stabilization, and frustration in protein folding. Bio-physical Journal, 106(8), 1729–1740.

    Google Scholar 

  37. Schmidhuber, J. (1997). A computer scientist’s view of life, the universe, and everything. In C. Freksa (Ed.), Foundations of computer science (pp. 201–208). Berlin: Springer.

    Google Scholar 

  38. Smolin, L. (2006). Atoms of space and time. Scientific American, 15(3), 56–65.

    Google Scholar 

  39. Solomonoff, R. J. (1964). A formal theory of inductive inference, parts 1 and 2. Information and Control, 7(1–22), 224–254.

    MathSciNet  Article  MATH  Google Scholar 

  40. Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36, 6377–6396.

    MathSciNet  Article  MATH  Google Scholar 

  41. ‘t Hooft, G. (1993). Dimensional reduction in quantum gravity. ArXiv preprint gr-qc/9310026.

  42. ‘t Hooft, G. (1996). In search of the ultimate building blocks. In search of the ultimate building blocks (1st ed.). Cambridge: Cambridge University Press.

  43. Turing, A. M. (1937). Computability and λ-definability. The Journal of Symbolic Logic, 2(4), 153–163.

    Article  Google Scholar 

  44. Twardy, C., Gardner, S., & Dowe, D. L. (2005). Empirical data sets are algorithmically compressible: Reply to McAllister? Studies in History and Philosophy of Science Part A, 36(2), 391–402.

    MathSciNet  Article  Google Scholar 

  45. Von Neumann, J., & Burks, A. W. (1966). Theory of self-reproducing automata. IEEE Transactions on Neural Networks, 5(1), 3–14.

    Google Scholar 

  46. Weinberg, S. (2002). Is the universe a computer? The New York Review of Books, 49(16), 43–47.

    Google Scholar 

  47. Welsh, D. J. (1993). The complexity of knots. Annals of Discrete Mathematics, 55, 159–171.

    MathSciNet  Article  Google Scholar 

  48. Wheeler, J. A. (1984). Bits, quanta, meaning. Problems in Theoretical Physics, 121–141.

  49. Wolfram, S. (2002). A new kind of science (Vol. 5). Champaign: Wolfram media.

    Google Scholar 

  50. Zuse, K. (1969). Rechnender Raum (Calculating space). http://philpapers.org/rec/ZUSRR.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Pexton.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pexton, M. Emergence and Fundamentality in a Pancomputationalist Universe. Minds & Machines 25, 301–320 (2015). https://doi.org/10.1007/s11023-015-9383-9

Download citation

Keywords

  • Philosophy
  • Pancomputationalism
  • Emergence
  • Fundamentality