Minds and Machines

, Volume 24, Issue 1, pp 101–122 | Cite as

A Revised Attack on Computational Ontology

  • Nir FrescoEmail author
  • Phillip J. Staines


There has been an ongoing conflict regarding whether reality is fundamentally digital or analogue. Recently, Floridi has argued that this dichotomy is misapplied. For any attempt to analyse noumenal reality independently of any level of abstraction at which the analysis is conducted is mistaken. In the pars destruens of this paper, we argue that Floridi does not establish that it is only levels of abstraction that are analogue or digital, rather than noumenal reality. In the pars construens of this paper, we reject a classification of noumenal reality as a deterministic discrete computational system. We show, based on considerations from classical physics, why a deterministic computational view of the universe faces problems (e.g., a reversible computational universe cannot be strictly deterministic).


Digital Digital ontology Discrete Digital computation Reversible computation Levels of abstraction Deterministic Entropy 


  1. Adriaans, P., & Van Emde Boas, P. (2011). Computation, information, and the arrow of time. In S. B. Cooper & A. Sorbi (Eds.), Computability in context (pp. 1–17). World Scientific: Imperial College Press. Google Scholar
  2. Baez, J. C., & Stay, M. (2010). Algorithmic thermodynamics. arXiv:1010.2067.Google Scholar
  3. Bais, F. A., & Farmer, J. D. (2008). The physics of information. In P. Adriaans & J. van Benthem (Eds.), Handbook of the philosophy of information (pp. 609–683). Amsterdam: Elsevier.CrossRefGoogle Scholar
  4. Baker, H. (1992). NREVERSAL of fortune—The thermodynamics of garbage collection. In Y. Bekkers & J. Cohen (Eds.), Memory management (Vol. 637, pp. 507–524). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  5. Bennett, C. H. (1973). Logical reversibility of computation. IBM Journal of Research and Development, 17(6), 525–532.CrossRefzbMATHGoogle Scholar
  6. Blachowicz, J. (1997). Analog representation beyond mental imagery. The Journal of Philosophy, 94(2), 55–84.CrossRefGoogle Scholar
  7. Calude, C. S. (2009). Information: The algorithmic paradigm. In G. Sommaruga (Ed.), Formal theories of information (Vol. 5363, pp. 79–94). Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  8. Calude, C., Campbell, D. I., Svozil, K., & Ştefuanecu, D. (1995). Strong determinism vs. computability. In W. D. Schimanovich, E. Köhler, & P. Stadler (Eds.), The foundational debate, complexity and constructivity in mathematics and physics. Berlin: Springer.Google Scholar
  9. Copeland, B. J. (2002). Accelerating turing machines. Minds and Machines, 12(2), 281–300.CrossRefzbMATHMathSciNetGoogle Scholar
  10. Davies, E. B. (2001). Building infinite machines. The British Journal for the Philosophy of Science, 52(4), 671–682. doi: 10.1093/bjps/52.4.671.CrossRefzbMATHMathSciNetGoogle Scholar
  11. Evans, D. J., & Searles, D. J. (2002). The fluctuation theorem. Advances in Physics, 51(7), 1529–1585.CrossRefGoogle Scholar
  12. Floridi, L. (2009). Against digital ontology. Synthese, 168(1), 151–178.CrossRefzbMATHGoogle Scholar
  13. Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  14. Fredkin, E. (1990). An informational process based on reversible universal cellular automata. Physica D: Nonlinear Phenomena, 45(1–3), 254–270.Google Scholar
  15. Fredkin, E. (1992). Finite nature. In G. Chardin (Ed.), Proceedings of the XXVIIth Rencontre De Moriond Series. France: Editions Frontieres.Google Scholar
  16. Fredkin, E., & Toffoli, T. (1982). Conservative logic. International Journal of Theoretical Physics, 21(3–4), 219–253.Google Scholar
  17. Fresco, N. (2010). Explaining computation without semantics: keeping it simple. Minds and Machines, 20(2), 165–181.CrossRefGoogle Scholar
  18. Fresco, N., Primiero, G (2013). Miscomputation. Philosophy & Technology, 26(3), 253–272.Google Scholar
  19. Jaynes, E. T. (1965). Gibbs vs Boltzmann entropies. American Journal of Physics, 33(5), 391–398.CrossRefzbMATHGoogle Scholar
  20. Kant, I. (1996). Critique of pure reason. (W. S. Pluhar, Trans.). Indianapolis, IN: Hackett Pub. Co.Google Scholar
  21. Koupelis, T. (2011). In quest of the universe. Sudbury, MA: Jones and Bartlett Publishers.Google Scholar
  22. Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191.CrossRefzbMATHMathSciNetGoogle Scholar
  23. Lange, K.-J., McKenzie, P., & Tapp, A. (2000). Reversible space equals deterministic space. Journal of Computer and System Sciences, 60(2), 354–367.CrossRefzbMATHMathSciNetGoogle Scholar
  24. Laraudogoitia, J. P. (2011). Supertasks. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2011). Retrieved from
  25. Lewis, D. (1971). Analog and digital. Noûs, 5(3), 321–327.CrossRefGoogle Scholar
  26. Li, M., & Vitányi, P. M. B. (2008). An introduction to Kolmogorov complexity and its applications. New York: Springer.CrossRefzbMATHGoogle Scholar
  27. Maley, C. J. (2010). Analog and digital, continuous and discrete. Philosophical Studies, 155(1), 117–131.CrossRefGoogle Scholar
  28. Maroney, O. J. E. (2009). Does a computer have an arrow of time? Foundations of Physics, 40(2), 205–238.Google Scholar
  29. Modgil, M. S. (2009). Loschmidt’s paradox, entropy and the topology of spacetime. arxiv: 0907.3165.Google Scholar
  30. O’Brien, G., & Opie, J. (2006). How do connectionist networks compute? Cognitive Processing, 7(1), 30–41.CrossRefGoogle Scholar
  31. Piccinini, G. (2007). Computation without representation. Philosophical Studies, 137(2), 205–241.CrossRefMathSciNetGoogle Scholar
  32. Popper, K. R. (1950a). Indeterminism in quantum physics and in classical physics. Part I. British Journal for the Philosophy of Science, 1(2), 117–133.CrossRefzbMATHMathSciNetGoogle Scholar
  33. Popper, K. R. (1950b). Indeterminism in quantum physics and in classical physics. Part II. British Journal for the Philosophy of Science, 1(3), 173–195.CrossRefMathSciNetGoogle Scholar
  34. Pylyshyn, Z. W. (1984). Computation and cognition: Toward a foundation for cognitive science. Cambridge, MA: The MIT Press.Google Scholar
  35. Rapaport, W. J. (1998). How minds can be computational systems. Journal of Experimental & Theoretical Artificial Intelligence, 10(4), 403–419.CrossRefzbMATHGoogle Scholar
  36. Schulman, L. S. (2005). A Computer’s arrow of time. Entropy, 7(4), 221–233.CrossRefzbMATHMathSciNetGoogle Scholar
  37. Steinhart, E. (1998). Digital metaphysics. In T. W. Bynum & J. H. Moor (Eds.), The digital phoenix (pp. 117–134). Cambridge: Blackwell. Google Scholar
  38. Strawson, G. (2008). Can we know the nature of reality as it is in itself? In G. Strawson (Ed.), Real materialism: And other essays (pp. 75–100). Oxford: Oxford University Press.Google Scholar
  39. Sutner, K. (2004). The complexity of reversible cellular automata. Theoretical Computer Science, 325(2), 317–328.CrossRefzbMATHMathSciNetGoogle Scholar
  40. Teixeira, A., Matos, A., Souto, A., & Antunes, L. (2011). Entropy measures vs. kolmogorov complexity. Entropy, 13(12), 595–611.CrossRefzbMATHMathSciNetGoogle Scholar
  41. Vitányi, P. (2005). Time, space, and energy in reversible computing. In Proceedings of the 2nd conference on computing frontiers (pp. 435–444). ACM: ACM Press.Google Scholar
  42. Wheeler, J. (1982). The computer and the universe. International Journal of Theoretical Physics, 21(6–7), 557–572.CrossRefGoogle Scholar
  43. Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.Google Scholar
  44. Wolpert, D. H. (2001). Computational capabilities of physical systems. Physical Review E, 65(1), 016128.CrossRefMathSciNetGoogle Scholar
  45. Zuse, K. (1970). Calculating space. Cambridge, MA: Massachusetts Institute of Technology, Project MAC.Google Scholar
  46. Zuse, Konrad. (1993). The computer—My life. Berlin: Springer-Verlag.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Humanities & LanguagesUniversity of New South Wales (UNSW)SydneyAustralia

Personalised recommendations