Skip to main content
Log in

Universal Intelligence: A Definition of Machine Intelligence

Minds and Machines Aims and scope Submit manuscript

Cite this article


A fundamental problem in artificial intelligence is that nobody really knows what intelligence is. The problem is especially acute when we need to consider artificial systems which are significantly different to humans. In this paper we approach this problem in the following way: we take a number of well known informal definitions of human intelligence that have been given by experts, and extract their essential features. These are then mathematically formalised to produce a general measure of intelligence for arbitrary machines. We believe that this equation formally captures the concept of machine intelligence in the broadest reasonable sense. We then show how this formal definition is related to the theory of universal optimal learning agents. Finally, we survey the many other tests and definitions of intelligence that have been proposed for machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others


  • Albus, J. S. (1991). Outline for a theory of intelligence. IEEE Transactions Systems, Man and Cybernetics, 21(3), 473–509.

    Article  MathSciNet  Google Scholar 

  • Alvarado, N., Adams, S., Burbeck, S., & Latta, C. (2002). Beyond the Turing test: Performance metrics for evaluating a computer simulation of the human mind. In Performance metrics for intelligent systems workshop. Gaithersburg, MD, North-Holland.

  • Anastasi, A. (1992). What counselors should know about the use and interpretation of psychological tests. Journal of Counseling and Development, 70(5), 610–615.

    Google Scholar 

  • Asohan, A. (2003). Leading humanity forward. The Star, October 14.

  • Bell, T. C., Cleary, J. G., & Witten, I. H. (1990). Text compression. Englewood Cliffs, NJ: Prentice Hall.

  • Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Belmont, MA: Athena Scientific.

    MATH  Google Scholar 

  • Binet, A. (1911). Les idees modernes sur les enfants. Paris: Flammarion.

    Google Scholar 

  • Binet, A., & Simon, T. (1905). Methodes nouvelles por le diagnostic du niveai intellectuel des anormaux. L’Année Psychologique, 11, 191–244.

    Google Scholar 

  • Bingham, W. V. (1937). Aptitudes and aptitude testing. New York: Harper & Brothers.

    Google Scholar 

  • Block, N. (1981). Psychologism and behaviorism. Philosophical Review, 90, 5–43.

    Article  Google Scholar 

  • Boring, E. G. (1923). Intelligence as the tests test it. New Republic, 35, 35–37.

    Google Scholar 

  • Bringsjord, S., & Schimanski, B. (2003). What is artificial intelligence? Psychometric AI as an answer. Eighteenth International Joint Conference on Artificial Intelligence, 18, 887–893.

    Google Scholar 

  • Calude, C. S. (2002). Information and randomness (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.

    Google Scholar 

  • Cattell, R. B. (1987). Intelligence: Its structure, growth, and action. New York: Elsevier.

    Google Scholar 

  • Chaitin, G. J. (1982). Gödel’s theorem and information. International Journal of Theoretical Physics, 22, 941–954.

    Article  MathSciNet  Google Scholar 

  • Dowe, D. L., & Hajek, A. R. (1998). A non-behavioural, computational extension to the Turing test. In International conference on computational intelligence & multimedia applications (ICCIMA ’98) (pp. 101–106). Gippsland, Australia.

  • Drever, J. (1952). A dictionary of psychology. Harmondsworth: Penguin Books.

    Google Scholar 

  • Edmonds, B. (2006). The social embedding of intelligence—towards producing a machine that could pass the turing test. In The Turing test sourcebook: Philosophical and methodological issues in the quest for the thinking computer. Dordrecht: Kluwer.

  • Eisner, J. (1991). Cognitive science and the search for intelligence. Invited paper presented to the Socratic Society, University of Cape Town.

  • Fiévet, C. (2005). Mesurer l’intelligence d’une machine. In Le Monde de l’intelligence (Vol. 1, pp. 42–45). Paris: Mondeo publishing.

  • Fogel, D. B. (1995). Review of computational intelligence: Imitating life. Proceedings of the IEEE, 83(11).

  • Ford, K. M., & Hayes, P. J. (1998). On computational wings: Rethinking the goals of artificial intelligence. Scientific American, 9, (4), 78–83.

  • French, R. M. (1990). Subcognition and the limits of the Turing test. Mind, 99, 53–65.

    Article  MathSciNet  Google Scholar 

  • Gardner, H. (1993). Frames of mind: Theory of multiple intelligences. London: Fontana Press.

  • Goertzel, B. (2006). The hidden pattern. Brown Walker Press.

  • Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24(1), 13–23.

    Article  Google Scholar 

  • Gottfredson, L. S. (1997). Why g matters: The complexity of everyday life. Intelligence, 24(1), 79–132.

    Article  Google Scholar 

  • Gottfredson, L. S. (2002). g: Highly general and highly practical. In R. J. Sternberg & E. L. Grigorenko (Eds.), The general factor of intelligence: How general is it? (pp. 331–380). Hillsdale, NJ: Erlbaum.

  • Gould, S. J. (1981). The Mismeasure of man. New York: W. W. Norton & Company.

  • Graham-Rowe, D. (2005). Spotting the bots with brains. In New scientist magazine (Vol. 2512, p. 27).

  • Gregory, R. L. (1998). The Oxford companion to the mind. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Gudwin, R. R. (2000). Evaluating intelligence: A computational semiotics perspective. In IEEE international conference on systems, man and cybernetics (pp. 2080–2085). Nashville, TN.

  • Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.

    Google Scholar 

  • Gunderson, K. (1971). Mentality and machines. Garden City, NY: Doubleday and company.

    Google Scholar 

  • Harnad, S. (1989). Minds, machines and Searle. Journal of Theoretical and Experimental Artificial Intelligence, 1, 5–25.

    Article  Google Scholar 

  • Haugeland, J. (1981). Mind design: Philosophy, psychology, and artificial intelligence. MIT Press: Bradford Books.

  • Henmon, C. V. A. (1921). The measurement of intelligence. School and Society, 13, 151–158.

    Google Scholar 

  • Herman, L. M., & Pack, A. A. (1994). Animal intelligence: Historical perspectives and contemporary approaches. In R. Sternberg (Ed.), Encyclopedia of human intelligence (pp. 86–96). New York: Macmillan.

    Google Scholar 

  • Hernández-Orallo, J. (2000a). Beyond the Turing test. Journal of Logic, Language and Information, 9(4), 447–466.

    Article  MATH  MathSciNet  Google Scholar 

  • Hernández-Orallo, J. (2000b). On the computational measurement of intelligence factors. In Performance metrics for intelligent systems workshop (pp. 1–8). Gaithersburg, MD.

  • Hernández-Orallo, J., & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of the international symposium of engineering of intelligent systems (EIS’98) (pp. 146–163). ICSC Press.

  • Herrnstein, R. J., & Murray, C. (1996). The bell curve: Intelligence and class structure in American life. New York: Free Press.

  • Horn, J. (1970). Organization of data on life-span development of human abilities. In R. Goulet & P. B. Baltes (Eds.), Life-span developmental psychology: Research and theory. New York: Academic Press.

  • Horst, J. (2002). A native intelligence metric for artificial systems. In Performance metrics for intelligent systems workshop. Gaithersburg, MD

  • Hsu, F. H., Campbell, M. S., & Hoane, A. J. (1995). Deep blue system overview. In Proceedings of the 1995 international conference on supercomputing (pp. 240–244).

  • Hutchens, J. L. (1996). How to pass the Turing test by cheating.

  • Hutter, M. (2001a). Towards a universal theory of artificial intelligence based on algorithmic probability and sequential decisions. In Proceedings of the 12th Eurpean conference on machine learning (ECML-2001) (pp. 226–238).

  • Hutter, M. (2001b). Universal sequential decisions in unknown environments. In Proceedings of the 5th European workshop on reinforcement learning (EWRL-5), 27 (pp. 25–26).

  • Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. Berlin: Springer, 300 pp.,

  • Hutter, M. (2006a). General discounting versus average reward. In Proceedings of the 17th international conference on algorithmic learning theory (ALT-06) vol 4264 of LNAI (pp. 244–258). Barcelona.

  • Hutter, M. (2006b). The human knowledge compression prize.

  • Hutter, M. (2007a). On universal prediction and Bayesian confirmation. Theoretical Computer Science, 384(1), 33–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Hutter, M. (2007b). Universal algorithmic intelligence: A mathematical top-down approach. In Artificial general intelligence (pp. 227–290). Berlin: Springer.

  • Johnson, W. L. (1992). Needed: A new test of intelligence. SIGARTN: SIGART Newsletter (ACM Special Interest Group on Artificial Intelligence), 3(4), 7–9.

  • Johnson-Laird, P. N., & Wason, P. C. (1977). A theoretical analysis of insight into a reasoning task. In P. N. Johnson-Laird & P. C. Wason (Eds.) Thinking: Readings in cognitive science (pp. 143–157). Cambridge, UK: Cambridge University Press.

  • Kaufman, A. S. (2000). Tests of intelligence. In R. J. Sternberg (Ed.), Handbook of intelligence. Cambridge, UK: Cambridge University Press.

  • Kurzweil, R. (2000). The age of spiritual machines: When computers exceed human intelligence. East Rutherford, NJ: Penguin.

  • Legg, S., & Hutter, M. (2004). Ergodic MDPs admit self-optimising policies. Technical Report IDSIA-21-04, IDSIA.

  • Legg, S., & Hutter, M. (2004). A taxonomy for abstract environments. Technical Report IDSIA-20-04, IDSIA.

  • Legg, S., & Hutter, M. (2005). A universal measure of intelligence for artificial agents. In Proceedings of the 21st international joint conference on artificial intelligence (IJCAI-2005) (pp. 1509–1510). Edinburgh.

  • Legg, S., & Hutter, M. (2006a). A formal definition of intelligence for artificial systems. In Proceedings anniversary summit of artificial intelligence. Monte Verita, Switzerland.

  • Legg, S., & Hutter, M. (2006b). A formal measure of machine intelligence. In Annual machine learning conference of Belgium and The Netherlands (Benelearn’06). Ghent.

  • Legg, S., & Hutter, M. (2007). A collection of definitions of intelligence. In B. Goertzel & P. Wang (Eds.), Advances in artificial general intelligence: Concepts, architectures and algorithms vol 157 of frontiers in artificial intelligence and applications. (pp. 17–24). Amsterdam, NL: IOS press. Online version:

  • Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9, 265–266.

    Google Scholar 

  • Li, M., & Vitányi, P. M. B. (1997). An introduction to Kolmogorov complexity and its applications (2nd ed.). Berlin: Springer.

  • Loebner, H. G. (1990). The Loebner prize—the first Turing test.

  • Looks, M., Goertzel, B., & Pennachin, C. (2004). Novamente: An integrative architecture for general intelligence. In AAAI fall symposium, achieving human-level intelligence.

  • Macphail, E. M. (1985). Vertebrate intelligence: The null hypothesis. In L. Weiskrantz (Ed.), Animal intelligence (pp. 37–50). Oxford: Clarendon.

    Google Scholar 

  • Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In AAAI/IAAI.

  • Masum, H., Christensen, S., & Oppacher, F. (2002). The Turing ratio: Metrics for open-ended tasks. In GECCO 2002: Proceedings of the genetic and evolutionary computation conference (pp. 973–980). New York: Morgan Kaufmann Publishers.

  • McCarthy, J. (2004). What is artificial intelligence?

  • Minsky, M. (1985). The society of mind. New York: Simon and Schuster.

    Google Scholar 

  • Müller, M. (2006). Stationary algorithmic probability. Technical report, TU Berlin, Berlin,

  • Neisser, U., Boodoo, G., Bouchard, T. J. Jr., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J., & Urbina, S. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51(2), 77–101.

  • Newell, A., & Simon, H. A. (1976). Computer science as empirical enquiry: Symbols and search. Communications of the ACM 19, 3, 113–126.

    Article  MathSciNet  Google Scholar 

  • Poole, D., Mackworth, A., & Goebel, R. (1998). Computational intelligence: A logical approach. New York: Oxford University Press.

    MATH  Google Scholar 

  • Raven, J. (2000). The Raven’s progressive matrices: Change and stability over culture and time. Cognitive Psychology, 41, 1–48.

    Article  Google Scholar 

  • Reznikova, Zh. I., & Ryabko, B. Ya. (1986). Analysis of the language of ants by information-theoretic methods. Problems of Information Transmission, 22, 245–249.

    MATH  Google Scholar 

  • Sanghi, P., & Dowe, D. L. (2003). A computer program capable of passing I.Q. tests. In Proceedings of the 4th ICCS international conference on cognitive science (ICCS’03) (pp. 570–575). Sydney, NSW, Australia.

  • Saygin, A., Cicekli, I., & Akman, V. (2000). Turing test: 50 years later. Minds and Machines, 10(4), 463–518.

    Article  Google Scholar 

  • Schmidhuber, J. (2002). The speed prior: A new simplicity measure yielding near-optimal computable predictions. In Proceedings of the 15th annual conference on computational learning theory (COLT 2002), Lecture notes in artificial intelligence (pp. 216–228). Sydney, Australia: Springer.

  • Schweizer, P. (1998). The truly total Turing test. Minds and Machines, 8, 263–272.

    Article  Google Scholar 

  • Searle, J. (1980). Minds, brains, and programs. Behavioral & Brain Sciences, 3, 417–458.

    Article  Google Scholar 

  • Shieber, S. (1994). Lessons from a restricted Turing test. CACM: Communications of the ACM, 37(6), 70–78.

  • Simonton, D. K. (2003). An interview with Dr. Simonton. In J. A. Plucker (Ed.), Human intelligence: Historical influences, current controversies, teaching resources.∼intell

  • Slatter, J. (2001). Assessment of children: Cognitive applications (4th ed.). San Diego: Jermone M. Satler Publisher Inc.

  • Slotnick, B. M., & Katz, H. M. (1974). Olfactory learning-set formation in rats. Science, 185, 796–798.

    Article  Google Scholar 

  • Smith, W. D. (2006). Mathematical definition of “intelligence” (and consequences).∼wds/homepage/works.html

  • Spearman, C. E. (1927). The abilities of man, their nature and measurement. New York: Macmillan.

    MATH  Google Scholar 

  • Stern, W. L. (1912). Psychologischen Methoden der Intelligenz-Prüfung. Leipzig: Barth.

    Google Scholar 

  • Sternberg, R. J. (1985). Beyond IQ: A triacrchi theory of human intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J. (Ed.) (2000). Handbook of intelligence. Cambridge University Press.

  • Sternberg, R. J. (2003). An interview with Dr. Sternberg. In J. A. Plucker (Ed.), Human intelligence: Historical influences, current controversies, teaching resources.∼intell

  • Sternberg, R. J., & Berg, C. A. (1986). Quantitative integration: Definitions of intelligence: A comparison of the 1921 and 1986 symposia. In R. J. Sternberg & D. K. Detterman (Eds.), What is intelligence? Contemporary wiewpoints on its nature and definition (pp. 155–162). Norwood, NJ: Ablex.

    Google Scholar 

  • Sternberg, R. J., & Grigorenko, E. L. (Eds.). (2002). Dynamic testing: The nature and measurement of learning potential. Cambridge, UK: Cambridge University Press.

  • Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge MA: MIT Press.

    Google Scholar 

  • Terman, L. M., & Merrill, M. A. (1950). The Stanford-Binet intelligence scale. Boston: Houghton Mifflin.

    Google Scholar 

  • Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.

    Google Scholar 

  • Treister-Goren, A., Dunietz, J., & Hutchens, J. L. (2000). The developmental approach to evaluating artificial intelligence—a proposal. In Performance metrics for intelligence systems.

  • Treister-Goren, A., & Hutchens, J. L. (2001). Creating AI: A unique interplay between the development of learning algorithms and their education. In Proceeding of the first international workshop on epigenetic robotics.

  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, LIX(236), 433–460.

  • Voss, P. (2005). Essentials of general intelligence: The direct path to AGI. In B. Goertzel & C. Pennachin (Eds.), Artificial general intelligence. Berlin: Springer.

  • Wallace, C. S. (2005). Statistical and inductive inference by minimum message length. Berlin: Springer.

    MATH  Google Scholar 

  • Wang, P. (1995). On the working definition of intelligence. Technical Report 94, Center for Research on Concepts and Cognition, Indiana University.

  • Watt, S. (1996). Naive psychology and the inverted Turing test. Psycoloquy, 7(14).

  • Wechsler, D. (1958). The measurement and appraisal of adult intelligence (4 ed.). Baltimore: Williams & Wilkinds.

    Google Scholar 

  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  • Zentall, T. R. (1997). Animal memory: The role of instructions. Learning and Motivation, 28, 248–267.

    Article  Google Scholar 

  • Zentall, T. R. (2000). Animal intelligence. In R. J. Sternberg (Ed.), Handbook of intelligence. Cambridge, UK: Cambridge University Press.

Download references


This work was supported by the Swiss NSF grant 200020-107616.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Shane Legg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Legg, S., Hutter, M. Universal Intelligence: A Definition of Machine Intelligence. Minds & Machines 17, 391–444 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: