Skip to main content

Scale construction from a decisional viewpoint


Many quantitative scales are constructed using cutoffs on a continuum with scores assigned to the cutoffs. This paper develops a framework for using or constructing such scales from a decision-making standpoint. It addresses questions such as: How many distinct thresholds or cutoffs on a scale (i.e., what levels of granularity) are useful for a rational agent? Where should these thresholds be placed given a rational agent’s preferences and risk-orientation? Do scale score assignments have any bearing on decision-making and if so, how should scores be assigned? Given two possible states of nature \(\{A, \sim A\}\), an ordered collection of alternatives \(\{R_{0}, R_{1},{\ldots}, R_{K}\}\) from which one is to be selected depending on the probability that A is the case, a simple expected utility condition stipulates when adjacent alternatives are distinguishable and determines the threshold odds separating them. Threshold odds and utilities are mapped onto scale scores via a simple distance model. The placement of the thresholds reflects relative concern over decisional consequences given A versus consequences given ∼ A. Likewise, it is shown that scale scores reflect risk-aversion or risk-seeking not only with respect to A versus ∼ A but also with respect to the rank of the R j . Connections are drawn between this framework and rank-dependent expected utility (RDEU) theory. Implications are adumbrated for both machine and human decision-making.

This is a preview of subscription content, access via your institution.


  • Bilgic, T., & Turksen, I. B. (1999). Measurement of membership functions: Theoretical and empirical work. In D. Dubois, & H. Prade (Eds.), The Handbook of fuzzy sets, Vol. 1: Fundamentals of fuzzy sets.

  • Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 29–51.

    MATH  MathSciNet  Article  Google Scholar 

  • Bonissone, P. P., & Decker, K. S. (1986). Selecting uncertainty calculi and granularity: An experiment in trading-off precision and complexity. In L.N. Kanal and J.F. Lemmer (Eds.) Uncertainty in artificial intelligence (pp. 217–248). Amsterdam: North-Holand.

    Google Scholar 

  • Connolly, T. (1987). Decision theory, reasonable doubt, and the utility of erroneous acquittals. Law and Human Behavior, 11, 101–112.

    Article  Google Scholar 

  • Cronbach, L. J., & Gleser G. C. (1957). Psychological tests and personnel decisions. Urbana, Illinois: University of Illinois Pres.

    Google Scholar 

  • Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1999). Common knowledge revisited. Annals of Pure and Applied Logic, 96, 89–105.

    MATH  MathSciNet  Article  Google Scholar 

  • Halpern, J. Y., Megiddo, N., & Munshi, A. (1985). Optimal precision in the presence of uncertainty. Journal of Complexity, 1, 170–196.

    MATH  MathSciNet  Article  Google Scholar 

  • Heinen, T. (1996). Latent class and discrete latent trait models: Similarities and differences. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Herrera-Viedma, E., Cordón, O., Luque, M., Lopez, A. G., & Muñoz, A. M. (2003). A model of fuzzy linguistic IRS based on multi-granular linguistic information. International Journal of Approximate Reasoning, 34, 221–239.

    MATH  MathSciNet  Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrika, 47, 263–291.

    MATH  Article  Google Scholar 

  • Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications. New Jersey: Prentice-Hall.

    Google Scholar 

  • Koutsoukis, N-S., Mitra, G., & Lucas, C. (1999). Adapting on-line analytical processing for decision modelling: The interaction of information and decision technologies. Decision Support Systems, 26, 1–30.

    Article  Google Scholar 

  • Luce, R. D. (1996). The ongoing dialog between empirical science and measurement theory. Journal of Mathematical Psychology, 40, 78–98.

    MATH  MathSciNet  Article  Google Scholar 

  • Luce, R. D., & Narens L. (1985). Classification of concatenation measurement structures according to scale type. Journal of Mathematical Psychology, 29, 1–72.

    MATH  MathSciNet  Article  Google Scholar 

  • Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.

    MATH  Article  Google Scholar 

  • McCalla, G., Greer, J., Barrie, B., & Pospisi, P. (1992). Granularity hierarchies. Computers and Mathematics with Applications, 23, 363–375.

    MATH  Article  Google Scholar 

  • Meyer, G. J, Finn, S. E., Eyde, L. D., Kay, G. G., Moreland, K. L., Dies, R. R., Eisman, E. J., Kubiszyn, T. W., & Reed, J. M. (2001). Psychological testing and psychological assessment: A review of evidence and issues. American Psychologist, 56, 128–165.

    Article  Google Scholar 

  • Quiggin, J. (1993). Generalized expected utility theory: The rank dependent model. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Steadman, H. J., Silver, E., Monahan, J., Appelbaum, P. S., Clark Robbins, P., Mulvey, E. P., Grisso, T., Roth, L. H., & Banks, S. (2000). A classification tree approach to the development of actuarial violence risk assessment tools. Law and Human Behavior, 24, 83–100.

    Article  Google Scholar 

  • Wolff, K. E. (2002). Concepts in fuzzy scaling theory: Order and granularity. Fuzzy Sets ad Systems, 132, 63–75.

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael Smithson.



Proof of Theorem 3

Suppose j ≤  (K + 1)/2 and m  ≤  (K + 1)/2.

Then for j < m, an algebraic rearrangement yields

$$ \frac{{B}_{j}}{{B}_{K}}-\frac{{B}_{ j}^\circ}{{B}^\circ}=\frac{{B}_{j} \Delta{B}_{ mm-1}({Q}_{m}+{Q}_{K-m})}{{B}_{ K}{B}_{K}^\circ} $$


$$ \frac{{B}_{K-j}}{{B}_{K}}-\frac{{B}^\circ_{ K-j}}{{B}^\circ}=\frac{-{B}_{j} \Delta{B}_{ mm-1}({Q}_{m}+{Q}_{K-m})}{{B}_{ K}{B}_{K}^\circ} $$


$$ \left[{\frac{{{B}}_{j}} {{B}_{ K}}}-\frac{{B}^\circ_{j}}{{B}^\circ}\right]+\left[\frac{{B}_{K-j}}{{B}_{K}}- \frac{{B}^\circ_{K-j}} {{B}^\circ}\right]=0. $$

For \(m\leq j \leq (K+1)/2\),

$$ \frac{{B}_{{j}}}{{B}_{{ K}}}-\frac{{B}^\circ_{{j}}} {{B}^\circ}-\frac{- {B}_{{K-j}}\Delta {B}_{{mm-1}}{Q}_{ m}+{B}_{{j}} \Delta {B}_{{K-mK-m+1}}{Q}_{{ K-m}}}{{B}_{K} {B}^\circ_{K}} $$


$$ \frac{{B}_{{K-j}}}{{B}_{{ K}}}-\frac{{B}^\circ_{{K-j}}} {{B}^\circ}=\frac{- {B}_{{j}}\Delta {B}_{{mm-1}}{Q}_{ m}+{B}_{{K-j}} \Delta {B}_{{ K-mK-m}+1}{Q}_{{K-m}}}{{B}_{K} {B}^\circ_{K}} $$

From the ESROS property we know that \(\Delta {B}_{{ K-mK-m}+1}=\Delta {B}_{{mm}-1}\), so

$$\left[{\frac{{B}_{{j}}}{{B}_{{K}}} -\frac{{B}^\circ_{{ j}}}{{B}^\circ}}\right]+\left[{\frac{{B}_{{ K-j}}}{{{B}_{{K}}}}-\frac{{B}^\circ_{{ K-j}}}{{B}^\circ}}\right]=\frac{\Delta {B}_{{ mm}-1}({B}_{{j}}+{B}_{{K-j}})({Q}_{{ K-m}}-{Q}_{{m}})}{{B}_{{K}}{B}^\circ_{{ K}}}$$

From the Cases I and II assumptions it immediately follows that this quantity is nonnegative for +q and nonpositive for  − q.


\({w}^\circ_{{m-1mj}} > ( < ){w}_{{m-1m}}\)


\({w}^\circ_{{K-mK-m}+1} > ( < )\,{w}_{{K-mK-m}+1}\) implies \(\Sigma\mu_{{j}} < <$> <$>( > )\Sigma\mu^\circ_{{j}}\). □

Proof of Corollary 3

Assume an ESROS and choose some \(m\leq (K+1)/2\).

Consider the BROS family defined by

$$\Delta {H}_{{jj}-1}=({w}_{{K-jK-j}+1}) ^{({a}+1)/2}({w}_{{j}-1{j}})^{{ a}/2} \hbox{ and }\Delta {G}_{{j}-1{j}}= ({w}_{{j}-1{j}})^{1 + {a}/2}({w}_{{ K-jK-j}+1})^{({a}+1)/2}.$$

We consider the two cases:

  1. I.
    $${w}^\circ_{{m}-1{m}}={w}_{{m}-1{ m}}\pm {q \hbox{ where } w}^\circ_{{m}-1{m}}{w}_{{ m}-1{m}} \leq1,$$


  2. II.
    $${w}^\circ_{{K-mK-m}+1}={w}_{{K-mK-m}+1} \pm {q \hbox{ where } w}^\circ_{{K-mK-m}+1}{w}_{{K-mK-m}+1} > 1.$$

Case I

We have

$$\Delta {H}^\circ_{{mm}-1}=({w}_{{K-mK-m}+1}) ^{({a}+1)/2}({w}_{{m}-1{m}}\pm {q})^{{ a}/2}=\Delta {H}_{{mm}-1}[({w}_{{m}-1{m}} \pm {q})/{w}_{{m}-1{m}}]^{{ a}/2}$$


$$\eqalign{\Delta {H}^\circ_{{ K-mK-m}+1} =({w}_{{m}-1{m}} \pm {q})^{({ a}+1)/2}({w}_{{K-mK-m}+1})^{{a}/2}\cr =\Delta {H}_{{K-mK-m}+1}[({w}_{{m}-1{m}}\pm {q})/{w}_{{m}-1{m}}]^{({a}+1)/2}.}$$


$$\eqalign{\Delta {B}^\circ_{{mm}-1} =\Delta {H}^\circ_{{mm}-1} [1+({w}_{{m}-1{m}}\pm {q})^{2}]^{1/2}\cr =\Delta {B}_{{mm}-1}[({w}_{{m}-1{m}}\pm {q})/{w}_{{m}-1{m}}]^{{ a}/2}\{[1+({w}_{{m}-1{m}}\pm {q})^{2}]/[1 + {w}^{2}_{{m}-1{m}}]\}^{1/2}}$$


$$\eqalign{\Delta {B}^\circ_{{K-mK-m}+1} =\Delta {H}^\circ_{{ K-mK-m}+1}[1 + ({w}_{{K-mK-m}+1})^{2}]^{1/2}\cr =\Delta {B}_{{K-mK-m}+1}[({w}_{{m}-1{m}}\pm {q})/{w}_{{m}-1{m}}]^{({a}+1)/2}.}$$

Now, let

$${Q}_{{m}}=[({w}_{{m}-1{m}}\pm {q})/ {w}_{{m}-1{m}}]^{{a}/2}\{[1 + ({w}_{{ m}-1{m}}\pm {q})^{2}]/[1 +{w}^{2}_{{m}-1{ m}}]\}^{1/2}-1$$


$${Q}_{{ K-m}}=[({w}_{{m}-1{m}}\pm {q})/{w}_{{ m}-1{m}}]^{({a}+1)/2}- 1.$$

A straightforward algebraic argument shows that \({w}^\circ_{{m}-1{m}}{w}_{{m}-1{m}} \leq1\) implies \({Q}_{{K-m}}-{Q}_{{m}}\geq(\leq)0\) if  + (−)q. The argument is as follows:

Assume  + q. Then

$$\eqalign{{w}^\circ_{{m}-1{m}}{w}_{{m}-1{m}} \leq1 &\Leftrightarrow {w}_{{m}-1{m}} + {q} + ({w}_{{m}-1{m}} + {q})({w}_{{m}-1{ m}})^{2} > {w}_{{m}-1{m}} + ({w}_{{m}-1{m}} + {q})^{2}\cr &\Leftrightarrow({w}_{{m}-1{m}} + {q})/{w}_{{m}-1{m}} > [1 + ({w}_{{m}-1{ m}} + {q})^{2}]/[1 + {w}^{2}_{{m}-1{m}}] \cr &\Leftrightarrow {Q}_{{K-m}}-{Q}_{{m}}\geq0. }<!endaligned> $$

A similar argument starting with  − q yields \({Q}_{{K-m}}- {Q}_{{m}}\leq 0\).

Case II

We have

$$\eqalign{\Delta {H}^\circ_{{mm}-1} =({w}_{{K-mK-m}+1} \pm {q})^{({a}+1)/2}({w}_{{m}-1{m}})^{{ a}/2}\cr =\Delta {H}_{{mm}-1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{K-mK-m}+1}]^{({ a}+1)/2}}$$


$$\eqalign{ \Delta {H}^\circ_{{K-mK-m}+1} = ({w}_{{m}-1{m}})^{({a}+1)/2}({w}_{{ K-mK-m}+1}\pm {q})^{{a}/2}\cr =\Delta {H}_{{ K-mK-m}+1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{ m}-1{m}}]^{{a}/2}.}$$


$$\eqalign{\Delta {B}^\circ_{{mm}-1} =\Delta {H}^\circ_{{mm}-1} [1+({w}_{{m}-1{m}}\pm {q})^{2}]^{1/2}\cr =\Delta {B}_{{mm}-1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{K-mK-m}+1}]^{({a}+1)/2}}$$


$$ \eqalign{ \Delta {B}^\circ_{{K-mK-m}+1}&=\Delta {H}^\circ_{{K-mK-m}+1}[1+({w}_{{K-mK-m}+1}\pm {q})^{2}]^{1/2}\cr &=\Delta {B}_{{ K-mK-m}+1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{ K-mK-m}+1}]^{{a}/2}\cr \quad\{[1 + ({w}_{{K-mK-m}+1}\pm {q})^{2}]/[1 + {w}^{2}_{{K-mK-m}+1}]\}^{1/2}. }<!endaligned> $$

Now, let

$${Q}_{{m}}=[({w}_{{K-mK-m}+1}\pm {q})/ {w}_{{K-mK-m}+1}]^{({a}+1)/2}-1$$


$$ \eqalign{{Q}_{{K-m}}= [({w}_{{K-mK-m}+1}\pm {q})/{w}_{{K-mK-m}+1}]^{{a}/2}\cr \{[1 + ({w}_{{K-mK-m}+1}\pm {q})^{2}]/[1 + {w}^{2}_{{ K-mK-m}+1}]\}^{1/2}-1.}$$

A straightforward algebraic argument similar to that in Case I shows that

$${w}^\circ_{{K-mK-m}+1}{w}_{{K-mK-m}+1} > 1 \hbox{ implies }{Q}_{{K-m}}-{Q}_{{m}} > ( < ) 0\quad\hbox{if} +(-){q}.$$

Thus, the BROS defined in Eq. 24 satisfied the requirements of Theorem 3 and is L-congruent. □

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smithson, M. Scale construction from a decisional viewpoint. Minds & Machines 16, 339–364 (2006).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Measurement
  • Expected utility
  • Scale construction
  • Granularity
  • Decision
  • Uncertainty