Appendix
Proof of Theorem 3
Suppose j ≤ (K + 1)/2 and m ≤ (K + 1)/2.
Then for j < m, an algebraic rearrangement yields
$$ \frac{{B}_{j}}{{B}_{K}}-\frac{{B}_{ j}^\circ}{{B}^\circ}=\frac{{B}_{j} \Delta{B}_{ mm-1}({Q}_{m}+{Q}_{K-m})}{{B}_{ K}{B}_{K}^\circ} $$
and
$$ \frac{{B}_{K-j}}{{B}_{K}}-\frac{{B}^\circ_{ K-j}}{{B}^\circ}=\frac{-{B}_{j} \Delta{B}_{ mm-1}({Q}_{m}+{Q}_{K-m})}{{B}_{ K}{B}_{K}^\circ} $$
so
$$ \left[{\frac{{{B}}_{j}} {{B}_{ K}}}-\frac{{B}^\circ_{j}}{{B}^\circ}\right]+\left[\frac{{B}_{K-j}}{{B}_{K}}- \frac{{B}^\circ_{K-j}} {{B}^\circ}\right]=0. $$
For \(m\leq j \leq (K+1)/2\),
$$ \frac{{B}_{{j}}}{{B}_{{ K}}}-\frac{{B}^\circ_{{j}}} {{B}^\circ}-\frac{- {B}_{{K-j}}\Delta {B}_{{mm-1}}{Q}_{ m}+{B}_{{j}} \Delta {B}_{{K-mK-m+1}}{Q}_{{ K-m}}}{{B}_{K} {B}^\circ_{K}} $$
and
$$ \frac{{B}_{{K-j}}}{{B}_{{ K}}}-\frac{{B}^\circ_{{K-j}}} {{B}^\circ}=\frac{- {B}_{{j}}\Delta {B}_{{mm-1}}{Q}_{ m}+{B}_{{K-j}} \Delta {B}_{{ K-mK-m}+1}{Q}_{{K-m}}}{{B}_{K} {B}^\circ_{K}} $$
From the ESROS property we know that \(\Delta {B}_{{ K-mK-m}+1}=\Delta {B}_{{mm}-1}\), so
$$\left[{\frac{{B}_{{j}}}{{B}_{{K}}} -\frac{{B}^\circ_{{ j}}}{{B}^\circ}}\right]+\left[{\frac{{B}_{{ K-j}}}{{{B}_{{K}}}}-\frac{{B}^\circ_{{ K-j}}}{{B}^\circ}}\right]=\frac{\Delta {B}_{{ mm}-1}({B}_{{j}}+{B}_{{K-j}})({Q}_{{ K-m}}-{Q}_{{m}})}{{B}_{{K}}{B}^\circ_{{ K}}}$$
From the Cases I and II assumptions it immediately follows that this quantity is nonnegative for +q and nonpositive for − q.
Therefore,
\({w}^\circ_{{m-1mj}} > ( < ){w}_{{m-1m}}\)
or
\({w}^\circ_{{K-mK-m}+1} > ( < )\,{w}_{{K-mK-m}+1}\) implies \(\Sigma\mu_{{j}} < <$> <$>( > )\Sigma\mu^\circ_{{j}}\). □
Proof of Corollary 3
Assume an ESROS and choose some \(m\leq (K+1)/2\).
Consider the BROS family defined by
$$\Delta {H}_{{jj}-1}=({w}_{{K-jK-j}+1}) ^{({a}+1)/2}({w}_{{j}-1{j}})^{{ a}/2} \hbox{ and }\Delta {G}_{{j}-1{j}}= ({w}_{{j}-1{j}})^{1 + {a}/2}({w}_{{ K-jK-j}+1})^{({a}+1)/2}.$$
We consider the two cases:
-
I.
$${w}^\circ_{{m}-1{m}}={w}_{{m}-1{ m}}\pm {q \hbox{ where } w}^\circ_{{m}-1{m}}{w}_{{ m}-1{m}} \leq1,$$
and
-
II.
$${w}^\circ_{{K-mK-m}+1}={w}_{{K-mK-m}+1} \pm {q \hbox{ where } w}^\circ_{{K-mK-m}+1}{w}_{{K-mK-m}+1} > 1.$$
Case I
We have
$$\Delta {H}^\circ_{{mm}-1}=({w}_{{K-mK-m}+1}) ^{({a}+1)/2}({w}_{{m}-1{m}}\pm {q})^{{ a}/2}=\Delta {H}_{{mm}-1}[({w}_{{m}-1{m}} \pm {q})/{w}_{{m}-1{m}}]^{{ a}/2}$$
and
$$\eqalign{\Delta {H}^\circ_{{ K-mK-m}+1} =({w}_{{m}-1{m}} \pm {q})^{({ a}+1)/2}({w}_{{K-mK-m}+1})^{{a}/2}\cr =\Delta {H}_{{K-mK-m}+1}[({w}_{{m}-1{m}}\pm {q})/{w}_{{m}-1{m}}]^{({a}+1)/2}.}$$
Therefore,
$$\eqalign{\Delta {B}^\circ_{{mm}-1} =\Delta {H}^\circ_{{mm}-1} [1+({w}_{{m}-1{m}}\pm {q})^{2}]^{1/2}\cr =\Delta {B}_{{mm}-1}[({w}_{{m}-1{m}}\pm {q})/{w}_{{m}-1{m}}]^{{ a}/2}\{[1+({w}_{{m}-1{m}}\pm {q})^{2}]/[1 + {w}^{2}_{{m}-1{m}}]\}^{1/2}}$$
and
$$\eqalign{\Delta {B}^\circ_{{K-mK-m}+1} =\Delta {H}^\circ_{{ K-mK-m}+1}[1 + ({w}_{{K-mK-m}+1})^{2}]^{1/2}\cr =\Delta {B}_{{K-mK-m}+1}[({w}_{{m}-1{m}}\pm {q})/{w}_{{m}-1{m}}]^{({a}+1)/2}.}$$
Now, let
$${Q}_{{m}}=[({w}_{{m}-1{m}}\pm {q})/ {w}_{{m}-1{m}}]^{{a}/2}\{[1 + ({w}_{{ m}-1{m}}\pm {q})^{2}]/[1 +{w}^{2}_{{m}-1{ m}}]\}^{1/2}-1$$
and
$${Q}_{{ K-m}}=[({w}_{{m}-1{m}}\pm {q})/{w}_{{ m}-1{m}}]^{({a}+1)/2}- 1.$$
A straightforward algebraic argument shows that \({w}^\circ_{{m}-1{m}}{w}_{{m}-1{m}} \leq1\) implies \({Q}_{{K-m}}-{Q}_{{m}}\geq(\leq)0\) if + (−)q. The argument is as follows:
Assume + q. Then
$$\eqalign{{w}^\circ_{{m}-1{m}}{w}_{{m}-1{m}} \leq1 &\Leftrightarrow {w}_{{m}-1{m}} + {q} + ({w}_{{m}-1{m}} + {q})({w}_{{m}-1{ m}})^{2} > {w}_{{m}-1{m}} + ({w}_{{m}-1{m}} + {q})^{2}\cr &\Leftrightarrow({w}_{{m}-1{m}} + {q})/{w}_{{m}-1{m}} > [1 + ({w}_{{m}-1{ m}} + {q})^{2}]/[1 + {w}^{2}_{{m}-1{m}}] \cr &\Leftrightarrow {Q}_{{K-m}}-{Q}_{{m}}\geq0. }<!endaligned> $$
A similar argument starting with − q yields \({Q}_{{K-m}}- {Q}_{{m}}\leq 0\).
Case II
We have
$$\eqalign{\Delta {H}^\circ_{{mm}-1} =({w}_{{K-mK-m}+1} \pm {q})^{({a}+1)/2}({w}_{{m}-1{m}})^{{ a}/2}\cr =\Delta {H}_{{mm}-1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{K-mK-m}+1}]^{({ a}+1)/2}}$$
and
$$\eqalign{ \Delta {H}^\circ_{{K-mK-m}+1} = ({w}_{{m}-1{m}})^{({a}+1)/2}({w}_{{ K-mK-m}+1}\pm {q})^{{a}/2}\cr =\Delta {H}_{{ K-mK-m}+1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{ m}-1{m}}]^{{a}/2}.}$$
Therefore,
$$\eqalign{\Delta {B}^\circ_{{mm}-1} =\Delta {H}^\circ_{{mm}-1} [1+({w}_{{m}-1{m}}\pm {q})^{2}]^{1/2}\cr =\Delta {B}_{{mm}-1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{K-mK-m}+1}]^{({a}+1)/2}}$$
and
$$ \eqalign{ \Delta {B}^\circ_{{K-mK-m}+1}&=\Delta {H}^\circ_{{K-mK-m}+1}[1+({w}_{{K-mK-m}+1}\pm {q})^{2}]^{1/2}\cr &=\Delta {B}_{{ K-mK-m}+1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{ K-mK-m}+1}]^{{a}/2}\cr \quad\{[1 + ({w}_{{K-mK-m}+1}\pm {q})^{2}]/[1 + {w}^{2}_{{K-mK-m}+1}]\}^{1/2}. }<!endaligned> $$
Now, let
$${Q}_{{m}}=[({w}_{{K-mK-m}+1}\pm {q})/ {w}_{{K-mK-m}+1}]^{({a}+1)/2}-1$$
and
$$ \eqalign{{Q}_{{K-m}}= [({w}_{{K-mK-m}+1}\pm {q})/{w}_{{K-mK-m}+1}]^{{a}/2}\cr \{[1 + ({w}_{{K-mK-m}+1}\pm {q})^{2}]/[1 + {w}^{2}_{{ K-mK-m}+1}]\}^{1/2}-1.}$$
A straightforward algebraic argument similar to that in Case I shows that
$${w}^\circ_{{K-mK-m}+1}{w}_{{K-mK-m}+1} > 1 \hbox{ implies }{Q}_{{K-m}}-{Q}_{{m}} > ( < ) 0\quad\hbox{if} +(-){q}.$$
Thus, the BROS defined in Eq. 24 satisfied the requirements of Theorem 3 and is L-congruent. □