Skip to main content

Scale construction from a decisional viewpoint

Abstract

Many quantitative scales are constructed using cutoffs on a continuum with scores assigned to the cutoffs. This paper develops a framework for using or constructing such scales from a decision-making standpoint. It addresses questions such as: How many distinct thresholds or cutoffs on a scale (i.e., what levels of granularity) are useful for a rational agent? Where should these thresholds be placed given a rational agent’s preferences and risk-orientation? Do scale score assignments have any bearing on decision-making and if so, how should scores be assigned? Given two possible states of nature \(\{A, \sim A\}\), an ordered collection of alternatives \(\{R_{0}, R_{1},{\ldots}, R_{K}\}\) from which one is to be selected depending on the probability that A is the case, a simple expected utility condition stipulates when adjacent alternatives are distinguishable and determines the threshold odds separating them. Threshold odds and utilities are mapped onto scale scores via a simple distance model. The placement of the thresholds reflects relative concern over decisional consequences given A versus consequences given ∼ A. Likewise, it is shown that scale scores reflect risk-aversion or risk-seeking not only with respect to A versus ∼ A but also with respect to the rank of the R j . Connections are drawn between this framework and rank-dependent expected utility (RDEU) theory. Implications are adumbrated for both machine and human decision-making.

This is a preview of subscription content, access via your institution.

References

  • Bilgic, T., & Turksen, I. B. (1999). Measurement of membership functions: Theoretical and empirical work. In D. Dubois, & H. Prade (Eds.), The Handbook of fuzzy sets, Vol. 1: Fundamentals of fuzzy sets.

  • Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 29–51.

    MATH  MathSciNet  Article  Google Scholar 

  • Bonissone, P. P., & Decker, K. S. (1986). Selecting uncertainty calculi and granularity: An experiment in trading-off precision and complexity. In L.N. Kanal and J.F. Lemmer (Eds.) Uncertainty in artificial intelligence (pp. 217–248). Amsterdam: North-Holand.

    Google Scholar 

  • Connolly, T. (1987). Decision theory, reasonable doubt, and the utility of erroneous acquittals. Law and Human Behavior, 11, 101–112.

    Article  Google Scholar 

  • Cronbach, L. J., & Gleser G. C. (1957). Psychological tests and personnel decisions. Urbana, Illinois: University of Illinois Pres.

    Google Scholar 

  • Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1999). Common knowledge revisited. Annals of Pure and Applied Logic, 96, 89–105.

    MATH  MathSciNet  Article  Google Scholar 

  • Halpern, J. Y., Megiddo, N., & Munshi, A. (1985). Optimal precision in the presence of uncertainty. Journal of Complexity, 1, 170–196.

    MATH  MathSciNet  Article  Google Scholar 

  • Heinen, T. (1996). Latent class and discrete latent trait models: Similarities and differences. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Herrera-Viedma, E., Cordón, O., Luque, M., Lopez, A. G., & Muñoz, A. M. (2003). A model of fuzzy linguistic IRS based on multi-granular linguistic information. International Journal of Approximate Reasoning, 34, 221–239.

    MATH  MathSciNet  Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrika, 47, 263–291.

    MATH  Article  Google Scholar 

  • Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications. New Jersey: Prentice-Hall.

    Google Scholar 

  • Koutsoukis, N-S., Mitra, G., & Lucas, C. (1999). Adapting on-line analytical processing for decision modelling: The interaction of information and decision technologies. Decision Support Systems, 26, 1–30.

    Article  Google Scholar 

  • Luce, R. D. (1996). The ongoing dialog between empirical science and measurement theory. Journal of Mathematical Psychology, 40, 78–98.

    MATH  MathSciNet  Article  Google Scholar 

  • Luce, R. D., & Narens L. (1985). Classification of concatenation measurement structures according to scale type. Journal of Mathematical Psychology, 29, 1–72.

    MATH  MathSciNet  Article  Google Scholar 

  • Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.

    MATH  Article  Google Scholar 

  • McCalla, G., Greer, J., Barrie, B., & Pospisi, P. (1992). Granularity hierarchies. Computers and Mathematics with Applications, 23, 363–375.

    MATH  Article  Google Scholar 

  • Meyer, G. J, Finn, S. E., Eyde, L. D., Kay, G. G., Moreland, K. L., Dies, R. R., Eisman, E. J., Kubiszyn, T. W., & Reed, J. M. (2001). Psychological testing and psychological assessment: A review of evidence and issues. American Psychologist, 56, 128–165.

    Article  Google Scholar 

  • Quiggin, J. (1993). Generalized expected utility theory: The rank dependent model. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Steadman, H. J., Silver, E., Monahan, J., Appelbaum, P. S., Clark Robbins, P., Mulvey, E. P., Grisso, T., Roth, L. H., & Banks, S. (2000). A classification tree approach to the development of actuarial violence risk assessment tools. Law and Human Behavior, 24, 83–100.

    Article  Google Scholar 

  • Wolff, K. E. (2002). Concepts in fuzzy scaling theory: Order and granularity. Fuzzy Sets ad Systems, 132, 63–75.

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Smithson.

Appendix

Appendix

Proof of Theorem 3

Suppose j ≤  (K + 1)/2 and m  ≤  (K + 1)/2.

Then for j < m, an algebraic rearrangement yields

$$ \frac{{B}_{j}}{{B}_{K}}-\frac{{B}_{ j}^\circ}{{B}^\circ}=\frac{{B}_{j} \Delta{B}_{ mm-1}({Q}_{m}+{Q}_{K-m})}{{B}_{ K}{B}_{K}^\circ} $$

and

$$ \frac{{B}_{K-j}}{{B}_{K}}-\frac{{B}^\circ_{ K-j}}{{B}^\circ}=\frac{-{B}_{j} \Delta{B}_{ mm-1}({Q}_{m}+{Q}_{K-m})}{{B}_{ K}{B}_{K}^\circ} $$

so

$$ \left[{\frac{{{B}}_{j}} {{B}_{ K}}}-\frac{{B}^\circ_{j}}{{B}^\circ}\right]+\left[\frac{{B}_{K-j}}{{B}_{K}}- \frac{{B}^\circ_{K-j}} {{B}^\circ}\right]=0. $$

For \(m\leq j \leq (K+1)/2\),

$$ \frac{{B}_{{j}}}{{B}_{{ K}}}-\frac{{B}^\circ_{{j}}} {{B}^\circ}-\frac{- {B}_{{K-j}}\Delta {B}_{{mm-1}}{Q}_{ m}+{B}_{{j}} \Delta {B}_{{K-mK-m+1}}{Q}_{{ K-m}}}{{B}_{K} {B}^\circ_{K}} $$

and

$$ \frac{{B}_{{K-j}}}{{B}_{{ K}}}-\frac{{B}^\circ_{{K-j}}} {{B}^\circ}=\frac{- {B}_{{j}}\Delta {B}_{{mm-1}}{Q}_{ m}+{B}_{{K-j}} \Delta {B}_{{ K-mK-m}+1}{Q}_{{K-m}}}{{B}_{K} {B}^\circ_{K}} $$

From the ESROS property we know that \(\Delta {B}_{{ K-mK-m}+1}=\Delta {B}_{{mm}-1}\), so

$$\left[{\frac{{B}_{{j}}}{{B}_{{K}}} -\frac{{B}^\circ_{{ j}}}{{B}^\circ}}\right]+\left[{\frac{{B}_{{ K-j}}}{{{B}_{{K}}}}-\frac{{B}^\circ_{{ K-j}}}{{B}^\circ}}\right]=\frac{\Delta {B}_{{ mm}-1}({B}_{{j}}+{B}_{{K-j}})({Q}_{{ K-m}}-{Q}_{{m}})}{{B}_{{K}}{B}^\circ_{{ K}}}$$

From the Cases I and II assumptions it immediately follows that this quantity is nonnegative for +q and nonpositive for  − q.

Therefore,

\({w}^\circ_{{m-1mj}} > ( < ){w}_{{m-1m}}\)

or

\({w}^\circ_{{K-mK-m}+1} > ( < )\,{w}_{{K-mK-m}+1}\) implies \(\Sigma\mu_{{j}} < <$> <$>( > )\Sigma\mu^\circ_{{j}}\). □

Proof of Corollary 3

Assume an ESROS and choose some \(m\leq (K+1)/2\).

Consider the BROS family defined by

$$\Delta {H}_{{jj}-1}=({w}_{{K-jK-j}+1}) ^{({a}+1)/2}({w}_{{j}-1{j}})^{{ a}/2} \hbox{ and }\Delta {G}_{{j}-1{j}}= ({w}_{{j}-1{j}})^{1 + {a}/2}({w}_{{ K-jK-j}+1})^{({a}+1)/2}.$$

We consider the two cases:

  1. I.
    $${w}^\circ_{{m}-1{m}}={w}_{{m}-1{ m}}\pm {q \hbox{ where } w}^\circ_{{m}-1{m}}{w}_{{ m}-1{m}} \leq1,$$

    and

  2. II.
    $${w}^\circ_{{K-mK-m}+1}={w}_{{K-mK-m}+1} \pm {q \hbox{ where } w}^\circ_{{K-mK-m}+1}{w}_{{K-mK-m}+1} > 1.$$

Case I

We have

$$\Delta {H}^\circ_{{mm}-1}=({w}_{{K-mK-m}+1}) ^{({a}+1)/2}({w}_{{m}-1{m}}\pm {q})^{{ a}/2}=\Delta {H}_{{mm}-1}[({w}_{{m}-1{m}} \pm {q})/{w}_{{m}-1{m}}]^{{ a}/2}$$

and

$$\eqalign{\Delta {H}^\circ_{{ K-mK-m}+1} =({w}_{{m}-1{m}} \pm {q})^{({ a}+1)/2}({w}_{{K-mK-m}+1})^{{a}/2}\cr =\Delta {H}_{{K-mK-m}+1}[({w}_{{m}-1{m}}\pm {q})/{w}_{{m}-1{m}}]^{({a}+1)/2}.}$$

Therefore,

$$\eqalign{\Delta {B}^\circ_{{mm}-1} =\Delta {H}^\circ_{{mm}-1} [1+({w}_{{m}-1{m}}\pm {q})^{2}]^{1/2}\cr =\Delta {B}_{{mm}-1}[({w}_{{m}-1{m}}\pm {q})/{w}_{{m}-1{m}}]^{{ a}/2}\{[1+({w}_{{m}-1{m}}\pm {q})^{2}]/[1 + {w}^{2}_{{m}-1{m}}]\}^{1/2}}$$

and

$$\eqalign{\Delta {B}^\circ_{{K-mK-m}+1} =\Delta {H}^\circ_{{ K-mK-m}+1}[1 + ({w}_{{K-mK-m}+1})^{2}]^{1/2}\cr =\Delta {B}_{{K-mK-m}+1}[({w}_{{m}-1{m}}\pm {q})/{w}_{{m}-1{m}}]^{({a}+1)/2}.}$$

Now, let

$${Q}_{{m}}=[({w}_{{m}-1{m}}\pm {q})/ {w}_{{m}-1{m}}]^{{a}/2}\{[1 + ({w}_{{ m}-1{m}}\pm {q})^{2}]/[1 +{w}^{2}_{{m}-1{ m}}]\}^{1/2}-1$$

and

$${Q}_{{ K-m}}=[({w}_{{m}-1{m}}\pm {q})/{w}_{{ m}-1{m}}]^{({a}+1)/2}- 1.$$

A straightforward algebraic argument shows that \({w}^\circ_{{m}-1{m}}{w}_{{m}-1{m}} \leq1\) implies \({Q}_{{K-m}}-{Q}_{{m}}\geq(\leq)0\) if  + (−)q. The argument is as follows:

Assume  + q. Then

$$\eqalign{{w}^\circ_{{m}-1{m}}{w}_{{m}-1{m}} \leq1 &\Leftrightarrow {w}_{{m}-1{m}} + {q} + ({w}_{{m}-1{m}} + {q})({w}_{{m}-1{ m}})^{2} > {w}_{{m}-1{m}} + ({w}_{{m}-1{m}} + {q})^{2}\cr &\Leftrightarrow({w}_{{m}-1{m}} + {q})/{w}_{{m}-1{m}} > [1 + ({w}_{{m}-1{ m}} + {q})^{2}]/[1 + {w}^{2}_{{m}-1{m}}] \cr &\Leftrightarrow {Q}_{{K-m}}-{Q}_{{m}}\geq0. }<!endaligned> $$

A similar argument starting with  − q yields \({Q}_{{K-m}}- {Q}_{{m}}\leq 0\).

Case II

We have

$$\eqalign{\Delta {H}^\circ_{{mm}-1} =({w}_{{K-mK-m}+1} \pm {q})^{({a}+1)/2}({w}_{{m}-1{m}})^{{ a}/2}\cr =\Delta {H}_{{mm}-1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{K-mK-m}+1}]^{({ a}+1)/2}}$$

and

$$\eqalign{ \Delta {H}^\circ_{{K-mK-m}+1} = ({w}_{{m}-1{m}})^{({a}+1)/2}({w}_{{ K-mK-m}+1}\pm {q})^{{a}/2}\cr =\Delta {H}_{{ K-mK-m}+1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{ m}-1{m}}]^{{a}/2}.}$$

Therefore,

$$\eqalign{\Delta {B}^\circ_{{mm}-1} =\Delta {H}^\circ_{{mm}-1} [1+({w}_{{m}-1{m}}\pm {q})^{2}]^{1/2}\cr =\Delta {B}_{{mm}-1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{K-mK-m}+1}]^{({a}+1)/2}}$$

and

$$ \eqalign{ \Delta {B}^\circ_{{K-mK-m}+1}&=\Delta {H}^\circ_{{K-mK-m}+1}[1+({w}_{{K-mK-m}+1}\pm {q})^{2}]^{1/2}\cr &=\Delta {B}_{{ K-mK-m}+1}[({w}_{{K-mK-m}+1}\pm {q})/{w}_{{ K-mK-m}+1}]^{{a}/2}\cr \quad\{[1 + ({w}_{{K-mK-m}+1}\pm {q})^{2}]/[1 + {w}^{2}_{{K-mK-m}+1}]\}^{1/2}. }<!endaligned> $$

Now, let

$${Q}_{{m}}=[({w}_{{K-mK-m}+1}\pm {q})/ {w}_{{K-mK-m}+1}]^{({a}+1)/2}-1$$

and

$$ \eqalign{{Q}_{{K-m}}= [({w}_{{K-mK-m}+1}\pm {q})/{w}_{{K-mK-m}+1}]^{{a}/2}\cr \{[1 + ({w}_{{K-mK-m}+1}\pm {q})^{2}]/[1 + {w}^{2}_{{ K-mK-m}+1}]\}^{1/2}-1.}$$

A straightforward algebraic argument similar to that in Case I shows that

$${w}^\circ_{{K-mK-m}+1}{w}_{{K-mK-m}+1} > 1 \hbox{ implies }{Q}_{{K-m}}-{Q}_{{m}} > ( < ) 0\quad\hbox{if} +(-){q}.$$

Thus, the BROS defined in Eq. 24 satisfied the requirements of Theorem 3 and is L-congruent. □

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smithson, M. Scale construction from a decisional viewpoint. Minds & Machines 16, 339–364 (2006). https://doi.org/10.1007/s11023-006-9034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-006-9034-2

Keywords

  • Measurement
  • Expected utility
  • Scale construction
  • Granularity
  • Decision
  • Uncertainty