Toward an accelerated adoption of data-driven findings in medicine

Research, skepticism, and the need to speed up public visibility of data-driven findings

Abstract

To accelerate the adoption of a new method with a high potential to replace or extend an existing, presumably less accurate, medical scoring system, evaluation should begin days after the new concept is presented publicly, not years or even decades later. Metaphorically speaking, as chameleons capable of quickly changing colors to help their bodies adjust to changes in temperature or light, health-care decision makers should be capable of more quickly evaluating new data-driven insights and tools and should integrate the highest performing ones into national and international care systems. Doing so is essential, because it will truly save the lives of many individuals.

This is a preview of subscription content, log in to check access.

References

  1. Ananthakrishnan, A. N., T. Cai, G. Savova, S. C. Cheng, P. Chen, R. G. Perez, V. S. Gainer, S. N. Murphy, P. Szolovits, Z. Xia, S. Shaw, S. Churchill, E. W. Karlson, I. Kohane, R. M. Plenge, and K. P. Liao. 2013. Improving case definition of Crohn’s disease and ulcerative colitis in electronic medical records using natural language processing: A novel informatics approach. Inflammatory Bowel Diseases 19 (7): 1411–1420.

    Article  Google Scholar 

  2. Beam, A. L., U. Kartoun, J. K. Pai, A. K. Chatterjee, T. P. Fitzgerald, S. Y. Shaw, and I. S. Kohane. 2017. Predictive modeling of physician-patient dynamics that influence sleep medication prescriptions and clinical decision-making. Scientific Reports 7: 42282.

    Article  Google Scholar 

  3. Bushak, L. 2015. Mad Scientist: 6 scientists who were dismissed as crazy, only to be proven right years later. Medical Daily, Nov 18, 2015.

  4. Byrne, C. D., and G. Targher. 2015. NAFLD: A multisystem disease. Journal of Hepatology 62: S47–S64.

    Article  Google Scholar 

  5. Charlton, M. 2008. Cirrhosis and liver failure in nonalcoholic fatty liver disease: Molehill or mountain? Hepatology 47: 1431–1433.

    Article  Google Scholar 

  6. Corey, K. E., U. Kartoun, H. Zheng, R. T. Chung, and S. Y. Shaw. 2016. Using an electronic medical records database to identify nontraditional cardiovascular risk factors in nonalcoholic fatty liver disease. The American Journal of Gastroenterology 111 (5): 671–676.

    Article  Google Scholar 

  7. ElMaghawry, M., A. Zanatta, and F. Zampieri. 2014. The discovery of pulmonary circulation: From Imhotep to William Harvey. Global Cardiology Science and Practice 2014(2):103–116.

    Google Scholar 

  8. Freeman, R. B. Jr, R. H. Wiesner, A. Harper, S. V. McDiarmid, J. Lake, E. Edwards, R. Merion, R. Wolfe, J. Turcotte, and L. Teperman. 2002. UNOS/OPTN Liver Disease Severity Score, UNOS/OPTN Liver and Intestine, and UNOS/OPTN Pediatric Transplantation Committees. The new liver allocation system: Moving toward evidence-based transplantation policy. Liver Transplantation 8 (9): 851–858.

    Article  Google Scholar 

  9. Institute of Medicine. 1999. Analysis of waiting times. In Organ procurement and transplantation: Assessing current policies and the potential impact of the DHHS final rule, ed. Committee on Organ Procurement, and Transplantation Policy, 57–58. Washington, D.C.: National Academy Press.

    Google Scholar 

  10. Kamath, P. S., and W. R. Kim. 2007. The model for end-stage liver disease (MELD). Hepatology 45 (3): 797–805.

    Article  Google Scholar 

  11. Kartoun, U. 2017a. Text nailing: An efficient human-in-the-loop text-processing method 2017. ACM Interactions 24 (6): 44–49.

    Article  Google Scholar 

  12. Kartoun, U. 2017b. Beyond brute force. Communications of the ACM 60 (10): 8–9.

    Article  Google Scholar 

  13. Kartoun, U. 2018. Toward an equation that anticipates AI risks. Communications of the ACM 61 (2): 8–9.

    Article  Google Scholar 

  14. Kartoun, U., V. Kumar, A. Brettman, S. Yu, K. Liao, E. Karlson, A. Ananthakrishnan, Z. Xia, V. Gainer, A. Cagan, S. Murphy, S. Churchill, I. Kohane, P. Szolovits, T. Cai, and S. Y. Shaw. 2015. A risk model for 30-day heart failure re-admission using electronic medical records. 2015 Joint Summits on Translational Science, San Francisco, CA.

  15. Kartoun, U., K. Corey, H. Zheng, and S. Shaw. 2016. A prediction model to assess mortality risk in cirrhosis. 2016 Joint Summits on Translational Science, San Francisco, CA.

  16. Kartoun, U., K. Corey, T. Simon, H. Zheng, R. Aggarwal, K. Ng, and S. Shaw. 2017. The MELD-Plus: A generalizable prediction risk score in cirrhosis. PLoS ONE 12 (10): e0186301. https://doi.org/10.1371/journal.pone.0186301. (eCollection 2017).

    Article  Google Scholar 

  17. Kartoun, U., R. Aggarwal, A. Beam, J. Pai, A. Chatterjee, T. Fitzgerald, I. Kohane, and S. Shaw. 2018. Development of an algorithm to identify patients with physician-documented insomnia. Scientific Reports 8: 7862.

    Article  Google Scholar 

  18. Kim, W. R., S. W. Biggins, W. K. Kremers, R. H. Wiesner, P. S. Kamath, J. T. Benson, E. Edwards, and T. M. Therneau. 2008. Hyponatremia and mortality among patients on the liver-transplant waiting list. New England Journal of Medicine 359 (10): 1018–1026.

    Article  Google Scholar 

  19. Liao, K. P., T. Cai, V. Gainer, S. Goryachev, Q. Zeng-treitler, S. Raychaudhuri, P. Szolovits, S. Churchill, S. Murphy, I. Kohane, E. W. Karlson, and R. M. Plenge. 2010. Electronic medical records for discovery research in rheumatoid arthritis. Arthritis Care & Research 62 (8): 1120–1127.

    Article  Google Scholar 

  20. Londoño, M. C., A. Cárdenas, M. Guevara, L. Quintó, D. de Las Heras, M. Navasa, A. Rimola, J. C. Garcia-Valdecasas, V. Arroyo, and P. Ginès. 2007. MELD score and serum sodium in the prediction of survival of patients with cirrhosis awaiting liver transplantation. Gut 56 (9): 1283–1290.

    Article  Google Scholar 

  21. Luca, A., B. Angermayr, G. Bertolini, F. Koenig, G. Vizzini, M. Ploner, M. Peck-Radosavljevic, B. Gridelli, and J. Bosch. 2007. An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis. Liver Transplantation 13 (8): 1174–1180.

    Article  Google Scholar 

  22. Malinchoc, M., P. S. Kamath, F. D. Gordon, C. J. Peine, J. Rank, and P. C. ter Borg. 2000. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 31 (4): 864–871.

    Article  Google Scholar 

  23. Mehta, N., T. Singh, R. Lopez, and N. Alkhouri. 2016. The heart age is increased in patients with nonalcoholic fatty liver disease and correlates with fibrosis and hepatocyte ballooning. The American Journal of Gastroenterology 111 (12): 1853–1854.

    Article  Google Scholar 

  24. Mulligan, D. C., and R. Hirose. 2014. OPTN/UNOS, Liver and Intestinal Organ Transplantation Committee. Report to the Board of Directors. June 23–24, 2014, Richmond, Virginia.

  25. Musso, G., R. Gambino, M. Cassader, and G. Pagano. 2011. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of noninvasive tests for liver disease severity. Annals of Medicine 43: 617–649.

    Article  Google Scholar 

  26. Ruf, A. E., W. K. Kremers, L. L. Chavez, V. I. Descalzi, L. G. Podesta, and F. G. Villamil. 2005. Addition of serum sodium into the MELD score predicts waiting list mortality better than MELD alone. Liver Transplantation 11 (3): 336–343.

    Article  Google Scholar 

  27. Simon, T. G., U. Kartoun, H. Zheng, A. T. Chan, R. T. Chung, S. Shaw, and K. E. Corey. 2017. MELD-Na score predicts incident major cardiovascular events, in patients with nonalcoholic fatty liver disease. Hepatology Communications 1 (5): 429–438.

    Article  Google Scholar 

  28. Tudoroiu, M. I., G. Constantin, L. Pâslaru, S. Iacob, C. Gheorghe, I. Popescu, D. Tomescu, and L. S. Gheorghe. 2018. The combination of serum cystatin C, urinary kidney injury molecule-1 and MELD-Plus score predicts early acute kidney injury after liver transplantation. Surgery, Gastroenterology and Oncology 23 (2): 121–126.

    Article  Google Scholar 

  29. Uzuner, O., Y. Luo, and P. Szolovits. 2007. Evaluating the state-of-the-art in automatic de-identification. Journal of the American Medical Informatics Association 14 (5): 550–563.

    Article  Google Scholar 

  30. Uzuner, O., I. Goldstein, Y. Luo, and I. Kohane. 2008. Identifying patient smoking status from medical discharge records. Journal of the American Medical Informatics Association 15 (1): 14–24.

    Article  Google Scholar 

Download references

Funding

The author received honoraria and travel funding from The American Association for the Study of Liver Diseases (October 2017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Uri Kartoun.

Ethics declarations

Conflict of interest

The author has declared that no competing interests exist. The author confirms that the commercial affiliation with IBM does not alter his adherence to all Medicine, Health Care and Philosophy policies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kartoun, U. Toward an accelerated adoption of data-driven findings in medicine. Med Health Care and Philos 22, 153–157 (2019). https://doi.org/10.1007/s11019-018-9845-y

Download citation

Keywords

  • Clinical informatics
  • Prediction modeling
  • Electronic medical records
  • Machine-learning
  • Data-mining
  • Cirrhosis
  • Liver transplantation