Skip to main content
Log in

Method of liquid consumption measurement in nuclear magnetic resonance flowmeters-relaxometers

  • Published:
Measurement Techniques Aims and scope

Abstract

The need to expand the functionality of systems for monitoring the parameters of the flow of liquid media is substantiated. This article presents the advantages of using meters based on nuclear magnetic resonance (NMR) to control the parameters of the flow of liquid media. This paper also aims to solve the problems that arise during the operation of NMR flowmeters-relaxometers in two measurement modes (i.e., pulse mode and mode with periodic modulation of the magnetic field in the NMR signal recording system). Notably, the main problem in the operation of these devices is associated with an increase in the error in measuring liquid flow or the termination of its measurement process with rapid changes in liquid flow. The use of a magnetic mark mode, which helps solve the aforementioned problem, significantly limits the possibilities of using NMR flowmeters-relaxometers when used to monitor the parameters of liquid media or with a large increase in the flowing medium temperature. A method for creating a magnetic mark at the noise level for measuring liquid flow is proposed. In this method, changing the composition of the flowing medium or replacing the liquid does not have a significant effect on the formation of a magnetic mark at the noise level in a strong inhomogeneous magnetic field (i.e., the noise amplitude is several times higher than the signal amplitude). The results of experimental studies of the nutation line from changes in the magnetic field gradient are presented. A mathematical model based on the modified Bloch equations is developed, and the relationships between the magnetic field parameters are established to implement the magnetic mark mode in the NMR signal with magnetization inversion at the noise level. The proposed method ensures that the influence of rapid changes in the value of liquid flow (by a factor of 10 or more) on the flow measurement error is insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davydov, V., Gureeva, I., Davydov, R., Dudkin, V.: Energies 15(2), 457 (2022). https://doi.org/10.3390/en15020457

    Article  Google Scholar 

  2. Gui, M., Shan, J., Liu, Y., Wu, P., Liang, Y., Zhang, F.: Ann Nucl Energy 194, 110084 (2023). https://doi.org/10.1016/j.anucene.2023.110084

    Article  Google Scholar 

  3. Zhang, Z., Liu, H., Song, T., Zhang, Q., Yang, L.B.K.: Ann Nucl Energy 165, 108766 (2022). https://doi.org/10.1016/j.anucene.2021.108766

    Article  Google Scholar 

  4. Kashaev, R.S., Kien, N.T., Tung, C.V., Kozelkov, O.V.: Pet. Chem. 59, 21–S29 (2019). https://doi.org/10.1134/S0965544119130073

    Article  Google Scholar 

  5. Safiullin, K., Kuzmin, V., Bogaychuk, A., Klochkov, A., Tagirov, M.: J. Pet. Sci. Eng. 210, 110010 (2022). https://doi.org/10.1016/j.petrol.2021.110010

    Article  Google Scholar 

  6. Kashaev, R.S., Kien, N.C., Tung, T.V., Kozelkov, O.V.: J. Appl. Spectrosc. 86(5), 890–895 (2019). https://doi.org/10.1007/s10812-019-00911-4

    Article  ADS  Google Scholar 

  7. O’Neill, K.T., Klotz, A., Stanwix, P.L.: Flow Meas. Instrum. 58, 104–111 (2017). https://doi.org/10.1016/j.flowmeasinst.2017.10.004

    Article  Google Scholar 

  8. Davydov, V.V., Myazin, N.S., Davydov, R.V.: Meas. Techn., 65. No 6, 444–452 (2022). https://doi.org/10.1007/s11018-022-02103-7

    Article  Google Scholar 

  9. Gizatullin, B., Gafurov, M., Murzakhanov, F., Mattea, C., Stapf, S.: Langmuir 37(22), 6783–6791 (2021). https://doi.org/10.1021/acs.langmuir.1c00882

    Article  Google Scholar 

  10. Davydov, V.V., Myazin, N.S., Davydov, R.V.: Meas. Techn., 65. No 4, 279–289 (2022). https://doi.org/10.1007/s11018-022-02080-x

    Article  Google Scholar 

  11. Kashaev, R.S., Suntsov, I.A., Tung, C.V., Usachev, A.E., Kozelkov, O.V.: J. Appl. Spectrosc. 86(2), 289–293 (2019). https://doi.org/10.1007/s10812-019-00814-4

    Article  ADS  Google Scholar 

  12. Zargar, M., Johns, M.L., Aljindan, J.M., Noui-Mehidi, M.N., O’Neill, K.T.: Spe Prod. Oper. 36(2), 423–436 (2021). https://doi.org/10.2118/205351-PA

    Article  Google Scholar 

  13. Sahu, S., Prajapati, A., Kumar, M., Bhattacharyay, R.: Flow Meas. Instrum. 66, 190–199 (2019). https://doi.org/10.1016/j.flowmeasinst.2019.03.008

    Article  Google Scholar 

  14. Zhernovoi, A.I., Dyachenko, S.V.: Russ. Phys. J. 58(1), 133–137 (2015). https://doi.org/10.1007/s11182-015-0472-2

    Article  Google Scholar 

  15. Davydov, V.V., Dudkin, V.I.: A. Yu. Karseev V. A. Vologdin j. Appl. Spectrosc. 82(6), 1013–1019 (2015). https://doi.org/10.1007/s10812-016-0220-6

    Article  Google Scholar 

  16. Davydov, V.V., Dudkin, V.I.: and A. Yu. Karseev russ Phys. J. 58(2), 146–152 (2015). https://doi.org/10.1007/s11182-015-0475-z

    Article  Google Scholar 

  17. Davydov, V.V., Dudkin, V.I.: and A. Yu. Karseev instrum. Exp. Techn. 58(6), 787–793 (2015). https://doi.org/10.1134/S0020441215060056

    Article  Google Scholar 

  18. Davydov, V.V., Dudkin, V.I., Velichko, E.N.: Meas. Techn., 59. No 2, 176–182 (2016). https://doi.org/10.1007/s11018-016-0938-9

    Article  Google Scholar 

  19. Alekseev, P.N., Gagarinskii, A.Y., Kalugin, M.A., Fomichenko, P.A., Asmolov, V.G.: Atom. Energy 126(4), 207–212 (2019). https://doi.org/10.1007/s10512-019-00538-w

    Article  Google Scholar 

  20. Adamov, E.O., Ivanov, V.K., Mochalov, Y.S., Lachkanov, E.V., Orlov, A.I.: Atom. Energy 132(3), 133–142 (2022). https://doi.org/10.1007/s10512-023-00916-5

    Article  Google Scholar 

  21. Bloch, F.: Phys. Rev. 70(7), 460–474 (1946). https://doi.org/10.1103/PhysRev.70.474

    Article  ADS  Google Scholar 

  22. Bloch, F., Wangsness, R.K.: Phys. Rev. 78(1), 82–89 (1950). https://doi.org/10.1103/PhysRev.89.728

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Davydov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 11, pp. 58–65, November, 2023. Russian DOI: https://doi.org/10.32446/0368-1025it.2023-11-58-65

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted October 15, 2023. Original article reviewed November 13, 2023. Original article accepted November 13, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, V.V., Gol’dberg, A.A., Dudkin, V.I. et al. Method of liquid consumption measurement in nuclear magnetic resonance flowmeters-relaxometers. Meas Tech (2024). https://doi.org/10.1007/s11018-024-02303-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11018-024-02303-3

Keywords

Navigation