Skip to main content
Log in

Optimization of the sensitivity of the magnetoimpedance sensor of small magnetic fields by methods of sequential approximation and particle swarm

  • Published:
Measurement Techniques Aims and scope

Abstract

The use of multiparametric optimization of an unknown discrete function in the development of applied solutions for physical systems is considered. Such optimization is practically implemented in real time using modern data transfer protocols at high speed with continuously increasing computing power. Optimization of the sensitivity of a modern magnetic sensor based on high-frequency magnetoimpedance in ferromagnetic microwires is studied as an applied problem. Iterative methods of a global maximum search—successive approximation and particle swarm algorithms—have been used for this optimization. The output signal of the sensor depends non-linearly on both the internal magnetic properties of the microwire and the excitation mode, which requires a certain calibration to establish optimal excitation parameters. Using an automated installation, sensor output signals for various excitation parameters and external magnetic fields were measured. The results of the search for the global maximum of sensor sensitivity by the successive approximation method and the particle swarm algorithm were presented. It was established that the particle swarm algorithm turned out to be more effective and precise than the successive approximation method.. With various excitation parameters, the particle swarm algorithm always determined the maximum sensitivity of the sensor when varying the three basic parameters of the excitation signal: frequency, amplitude, and the constant component. The results obtained will be applied in the development of highly sensitive intelligent magnetic sensors and systems based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xie, G.: B. Sunden, and Q. Wang, Appl. Therm. Eng.,28. No 8–9, 895–906 (2008). https://doi.org/10.1016/j.applthermaleng.2007.07.008

    Article  Google Scholar 

  2. Abdulwhab, A., et al.: Electr. Pow. Compo. Sys. 32(12), 1239–1254 (2004). https://doi.org/10.1080/15325000490446601

    Article  Google Scholar 

  3. Jahangirian, A., Shahrokhi, A.: Comput. Fluids 46(1), 270–276 (2011). https://doi.org/10.1016/j.compfluid.2011.02.010

    Article  MathSciNet  Google Scholar 

  4. Diab, A.A.Z., et al.: Energy Reports, 2022, 8. No 10, 384–393 (2022). https://doi.org/10.1016/j.egyr.2022.05.168

    Article  Google Scholar 

  5. Kennedy, J., Eberhart, R.C., Shi, T.: Swarm Intell. Morgan Kaufmann Publishers, San Francisco, Calif, USA, pp. 287–368 (2001)

    Book  Google Scholar 

  6. Poli, R.: J. Artif. Evol. Appl. 10, 1–10 (2008). https://doi.org/10.1155/2008/685175

    Article  Google Scholar 

  7. Gerginov, V., Pomponio, M., Knappe, S.: IEEE Sens J 20(21), 12684–12690 (2020). https://doi.org/10.1109/jsen.2020.300219

    Article  ADS  Google Scholar 

  8. Zhang, R., Mhaskar, R., Smith, K., Prouty, M.: Appl. Phys. Lett. 116(14), 1–5 (2020). https://doi.org/10.1063/5.0004746

    Article  Google Scholar 

  9. Han, C., et al.: Virtual Real. Intell. Hardw. 4(1), 38–54 (2022). https://doi.org/10.1016/j.vrih.2022.01.003

    Article  Google Scholar 

  10. Tehranchi, M.M., Ranjbaran, M., Eftekhari, H.: Sensor. Actuator. A: Phys., 170. No 1–2, 55–61 (2011). https://doi.org/10.1016/j.sna.2011.05.031

    Article  Google Scholar 

  11. Zhang, D., et al.: Sensor. Actuator. A: Phys., 249. No 1, 225–230 (2016). https://doi.org/10.1016/j.sna.2016.09.005

    Article  Google Scholar 

  12. Tsuyoshi, U., Jiaju, M.: J. Magnet Magnet. Mater. 514(15), 1–7 (2020). https://doi.org/10.1016/j.jmmm.2020.167148

    Article  Google Scholar 

  13. Makhnovskii, D., Panina, L., Mapps, D.J.: Phys. Rev. B 63, 1–17 (2002). https://doi.org/10.1103/PhysRevB.63.144424

    Article  Google Scholar 

  14. Ipatov, M., Zhukova, V., Zhukov, A.: Appl. Phys. Lett.. AIP. Publishing 97(25), 1–4 (2010). https://doi.org/10.1063/1.3529946

    Article  Google Scholar 

  15. Zhukov, A., et al.: J. Alloy. Compd. 814, 1–17 (2019). https://doi.org/10.1016/j.jallcom.2019.152225

    Article  Google Scholar 

  16. Gudoshnikov, S., et al.: Phys. Status Solidi A 211(5), 980–985 (2014). https://doi.org/10.1002/pssa.201300717

    Article  ADS  Google Scholar 

  17. Panina, L.V., et al.: Phys. Status Solidi A 213(2), 341–349 (2015). https://doi.org/10.1002/pssa.201532578

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-02-2023-934).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Yudanov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 11, pp. 38–44, November, 2023. Russian DOI: https://doi.org/doi.org/1032446/0368-1025it2023-l1-38-44

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted August 4, 2023. Accepted October 2, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudanov, N.A., Nemirovich, M.A., Andreiko, M.A. et al. Optimization of the sensitivity of the magnetoimpedance sensor of small magnetic fields by methods of sequential approximation and particle swarm. Meas Tech (2024). https://doi.org/10.1007/s11018-024-02300-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11018-024-02300-6

Keywords

Navigation