Skip to main content
Log in

Intelligent intertraverse messdose dynamograph for sucker-rod deep-well pumping units

  • Published:
Measurement Techniques Aims and scope

Abstract

Sucker-rod deep-well pumping units widely used in oil production are described. It is shown that oil production depends on the operating conditions of these units, which are selected based on the results of analyzing closed dynamometer charts. The latter describe the load on the suspension depending on the stroke of the polished rod of the unit. The quality of preparing the charts determines the ability to diagnose the technical condition of the unit. The trends in the development of existing dynamometer systems and methods for diagnosing the condition of a sucker-rod deep-well pumping unit have been analyzed. One of the ways to create an intelligent intertraverse dynamograph is considered based on a messdose of a pocket dynamograph with the use of modern pressure, acceleration, and temperature sensors; STM32 controllers; a graphic liquid crystal display with an I2C interface; radio communication protocols and digital technologies for processing periodic sensor signals. The existing dynamometer systems along with force and stroke sensors installed in various unit locations were analyzed, and the possibility of developing an intelligent stationary dynamograph by utilizing the latest advances in the field of technology and equipment for analyzing noises of the measured signals has been demonstrated. The proposed dynamograph should ensure early diagnostics of the technical condition of the unit, while satisfying the following criteria: low cost; ease of assembly; high sensitivity, reliability, flexibility, and accuracy. A block diagram of an intelligent intertraverse dynamograph for a sucker-rod deep-well pumping unit is presented, which is based on a pocket dynamograph messdose. The proposed intelligent intertraverse dynamograph will be useful for early diagnostics of the technical condition of deep-well pumps and tubing strings connecting them with the ground equipment, which will ultimately contribute to improving reliability of oil production equipment. The proposed intelligent intertraverse dynamograph can also be used in other engineering fields, where there is a need to measure force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. “Avtograf” CJSC, URL: http://www.industrial.ws/ru/automation_and_bales/sites/30.html (access date: September 18, 2023).

  2. Research and Production Enterprise “Grant” LLC, Stationary dynamometric system (DDS-04). User Manual, URL: http://www.grant-ufa.ru/files/DDS04_MAN.pdf?ysclid=lmolp4aa8h181230438 (access date: September 18, 2023).

  3. REVELTRONICS 150 PSI (10 BAR) 1/8″ NPT pressure sensor, available at: https://www.reveltronics.com/en/shop/60/6/onboard-computers/oil-fuelpressure-sensor-150psi-10bar-5v-detail (access date: September 18, 2023).

  4. MPU-6000 and MPU-6050 Product Specification Revision 3.4, available at: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf (access date: September 18, 2023).

  5. 128x64 Dot Graphic LCD Module—Blue Screen, available at: http://www.handsontec.com/dataspecs/display/12864-Graphic LCD.pdf (access date: September 18, 2023).

  6. 2‑Wire Serial EEPROM AT24C32-64, available at: https://ww1.microchip.com/downloads/en/DeviceDoc/doc0336.pdf (access date: September 18, 2023).

  7. F8L10D LoRa Module, available at: https://en.four-faith.net/LoRa-Module-Gateway/F8L10D-LoRa-Module.html (access date: September 18, 2023).

References

  1. Lao, L.M., Zhou, H.: Application and effect of buoyancy on sucker rod string dynamics. J. Petroleum Sci. Eng. 146, 264–271 (2016). https://doi.org/10.1016/j.petrol.2016.04.029

    Article  Google Scholar 

  2. Wang, D.Y., Shock Vibration, L.H.Z.:, pp. 1–10 (2018). https://doi.org/10.1155/2018/4979405

  3. Liang, W., Yu, X.C., Zhang, L.B., Lu, W.Q.: Mech Syst Signal Process 104, 224–241 (2018). https://doi.org/10.1016/j.ymssp.2017.10.018

    Article  ADS  Google Scholar 

  4. Zheng, B.Y., Gao, X.W., Li, X.Y.: J. Process. Control. 77, 76–88 (2019). https://doi.org/10.1016/j.jprocont.2019.02.008

    Article  Google Scholar 

  5. T.A. Aliev, O.G. Nusratov, G.A. Guluev et al., “Measurement Techniques,” Measurement Techniques, 61, no. 9, 885–890 (2018). https://doi.org/10.1007/s11018-018-1519-x

  6. Lv, H.Q., Liu, J., Han, J.Q., Jiang, A.: Sensors 16(5), 1–13 (2016). https://doi.org/10.3390/s16050685

    Article  ADS  Google Scholar 

  7. Xing, M.M., Dong, S.M.: SPE Production. Operations 30(2), 130–140 (2015). https://doi.org/10.2118/173190-PA

    Article  Google Scholar 

  8. Aliev, T.A., Guluyev, G.A., Rzayev, A.H., Pashayev, F.H., Sattarov, I.R., Kazimov, N.G.: Azerbaijan oil industry [in Russian. No 1, 54–59 (2012)

    Google Scholar 

  9. Aliev, T.A., Iskenderov, D.A., Guluyev, G.A., Rzayev, A.H., Rezvan, M.G.: Azerbaijan oil industry [in Russian. No 6, 37–41 (2014)

    Google Scholar 

  10. Aliyev, T.A., Nusratov, O.G., Guluyev, G.A., Rzayev, A.G., Pashayev, F.G.: Patent RU 021804 B1, Bull. of the Eurasian Patent Organization. No 9, (2015)

  11. T.A. Aliev, A.H. Rzayev, G.A. Guluyev, T.A. Alizade, U. E. Sattarova, and N.E. Rzayeva, “Technology for the noise control of oil wells by wattmeter card of the electric motor of sucker rod pumping units” [in Russian], Mekhatronika, Avtomatizatsiya, Upravlenie, No. 10, 686–698 (2015). https://doi.org/10.17587/mau.16.686-698.

  12. Aliev, T.A., Rzayev, A.H., Guluyev, G.A., Alizada, T.A., Rzayeva, N.E.: Mechanical Systems and Signal Processing. No 99, 47–56 (2018). https://doi.org/10.1016/j.ymssp.2017.06.010

    Article  Google Scholar 

  13. Rzayev, A.H., Aliyev, Y.G., Rezvan, M.H., Khakimyanov, M.: Proceedings International Conference on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russia, October 27–30, 2020, Ufa State Aviation Technical University. pp , 13–17 (2020)

  14. Virnovskiy, A.S.: Teoriya i Praktika Glubinnonasosnoy Dobychi Nefti [in Russian. Nedra Publ, Moscow (1971)

    Google Scholar 

  15. Neely, A.B., Gibbs, S.G.: Journal of Petroleum Technology. No 18(01), 91–98 (1966). https://doi.org/10.2118/1165-PA

    Article  Google Scholar 

  16. Andreev, V.V., Urazakov, K.R., Dalimov, V.U., et al.: Spravochnik po Dobyche Nefti. In: Urazakova, K.R. (ed.) in Russian], Nedra-Biznescent Publ. Moscow (2000)

    Google Scholar 

  17. Abdullaev, A.A., Dzhavadov, A.A., Levin, A.A.: Telemehanicheskie Kompleksy dlja Neftjanoj Promyshlennosti [in Russian. Nedra Publ, Moscow (1982)

    Google Scholar 

  18. Urazakov, K.R., Andreev, V.V., Zhulaev, V.P.I.: Neftepromyslovoye Oborudovaniye dlya Kustovykh Skvazhin [in Russiain. Nedra Publ, Moscow, pp. 80–81 (1999)

    Google Scholar 

  19. Mamedov, F.I., Dadasheva, R.B.: “Two-dimensional electromagnetic transducers of movements” [in Russian. J. Instrum. Eng. (5), 38–41 (2005)

  20. Zhuk, E., Shimchak, P.: “Sistema Lufkin Automation kontroliruyet rabotu skvazhin v Belarusi” [in Russian], Neft’ i Gaz Evrazija. No 8, 16–27 (2006)

    Google Scholar 

  21. Kovshov, V.D., Yemets, S.V., Khakim’yanov, M.I., Svetlakova, S.V.: “Datchiki usiliya dlya sistem dinamometrirovaniya shtangovykh glubinnykh nasosov dobychi nefti” [in Russian], Elektronnyy Nauchnyy Zhurnal Neftegazovoye Delo. No 1, 80 (2007)

    Google Scholar 

  22. S.G. Gibbs, US Patent US3343409A (26 September 1967).

  23. Rzaev, A.G.: “The intelligent intertraverse force sensor” [in Russian], Izvestija NANA, Serija Fiziko-tehnicheskih i Matematicheskih Nauk. No 3, 158–164 (2012)

    Google Scholar 

  24. Aliev, T.A., Abbasov, A.M., Guluev, G.A., As, G.: Rzaev, and F.G. Pashaev. Autom. Control. Comput. Sci. 43(3), 156–165 (2009). https://doi.org/10.3103/S0146411609030067

    Article  Google Scholar 

  25. Aliev, T.A., Guluev, G.A., As, G.: Rzaev, and F.G. Pashaev, “Korrelyatsionnyye indikatory mikroizmeneniy v tekhnicheskikh sostoyaniyakh ob’yektov kontrolya” [in Russian], Kibernetika i Sistemnyj Analiz. No 4, 169–178 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Rzayev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 10, pp. 49–55, October, 2023. Russian https://doi.org/10.32446/0368-1025it.2023-10-49-55.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted June 13, 2023; approved after reviewing July 26, 2023; accepted for publication July 27, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzayev, A.H., Aliyev, Y.G. & Rezvan, M.H. Intelligent intertraverse messdose dynamograph for sucker-rod deep-well pumping units. Meas Tech 66, 785–793 (2024). https://doi.org/10.1007/s11018-024-02292-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-024-02292-3

Keywords

UDC

Navigation