Skip to main content
Log in

GET 43-2022 State Primary Standard for the unit of excess pressure within the static pressure range of 10–1600 MPa and the pulse pressure range of 1–1200 MPa and the effective area of piston-cylinder assemblies in deadweight testers within the range of 0.05–1 cm2

  • Published:
Measurement Techniques Aims and scope

Abstract

The article reveals the necessity and relevance of precise pulse pressure measurement in industry, power engineering, and transportation. The design, operating principle, and the result of the metrological studies of GET 43-2022 State Primary Standard for the unit of excess pressure within the static pressure range of 10–1600 MPa and the pulse pressure range of 1–1200 MPa and the effective area of piston-cylinder assemblies in deadweight testers within the range of 0.05–1 cm2 are presented. GET 43-2022 includes hydraulic and pneumatic systems, as well as an ultrahigh-pressure valve designed to compare systems used in GET 43-2022 that operate with different standard liquids within the range of 250–1200 MPa. The reproduction range of the pulse pressure unit in GET 43-2022 is 1–1200 MPa. The method for reproducing the pulse pressure unit in liquid and gas media using hydraulic and pneumatic systems is described. The metrological characteristics of GET 43-2022 are studied; the budget of measurement uncertainty in reproducing the pulse pressure unit is estimated. The obtained results help to meet the development needs of the pool of working standards for pulse pressure measuring instruments traceable to GET 43-2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Rosstandart Order No. 3342 of December 30, 2022 “State Hierarchy Scheme for Instruments Measuring Pulse Pressure within the Range from 1 to 1200 MPa.”.

References

  1. Gaydon, A.G., Hurle, I.R.: The Shock Tube in High-temperature Chemical Physics. Reinhold, Publishing Corporation (1963)

    Google Scholar 

  2. Takayama, K.: Annu. Rev. Fluid Mech. 36(1), 347–379 (2004). https://doi.org/10.1146/annurev.fluid.36.050802.121954

    Article  ADS  Google Scholar 

  3. Mohankumar, P., Ajayan, J., Yasodharan, R., Devendran, P., Sambasivam, R.: Measurement 140, 305–322 (2019). https://doi.org/10.1016/j.measurement.2019.03.064

    Article  ADS  Google Scholar 

  4. Syrimis, M., Assanis, D.N.: J. Eng. Gas Turb. Power 125, 494–499 (2003). https://doi.org/10.1115/1.1560709

    Article  Google Scholar 

  5. Gnani, F., Zare-Behtash, H., Knotis, K.: Prog. Aerosp. Sci. 82, 36–56 (2016). https://doi.org/10.1016/j.paerosci.2016.02.001

    Article  Google Scholar 

  6. He, Y., Huang, H., Yu, D.: Aerosp. Sci. Technol. 56, 1–13 (2016). https://doi.org/10.1016/j.ast.2016.04.016

    Article  ADS  Google Scholar 

  7. Viji, M., Vikramaditya, N.S., Verma, S.B., Ali, N., Thakur, D.N.: Aerosp. Sci. Technol. 71, 695–705 (2017). https://doi.org/10.1016/j.ast.2017.10.021

    Article  Google Scholar 

  8. Farahani, M., Daliri, A., Younsi, J.: Aerosp. Sci. Technol. 86, 782–793 (2019). https://doi.org/10.1016/j.ast.2019.02.002

    Article  Google Scholar 

  9. Svete, A., Kutin, J.: Metrologia (2020). https://doi.org/10.1088/1681-7575/ab8f79

    Article  Google Scholar 

  10. Yao, Z., Liu, X., Wang, C., Yang, W.: Aerosp. Sci. Technol. 107, 106302 (2020). https://doi.org/10.1016/j.ast.2020.106302

    Article  Google Scholar 

  11. I.-M. Choi, T.-H. Yang, H.-W. Song, S.-S. Hong, and S.-Y. Woo, “High dynamic pressure standard using a step pressure generator,” in: 20th IMEKO World Congress 2012 (3 vols), September 9–14, 2012, Busan, Republic of Korea; International Measurement Confederation (IMEKO), vol. 3 (2013); pp. 1606–1609.

  12. Borovkov, V.M., Kuznetsov, D.I., Sekoyan, S.S., Shchipunov, A.N., Aslanyan, A.E., Gavrilkin, S.M.: Meas. Tech. 57(11), 1233–1237 (2015). https://doi.org/10.1007/s11018-015-0611-8

    Article  Google Scholar 

  13. Zolotyh, E.V. (ed.): (1987)

  14. Aslanyan, A.E.: Meas. Tech. 63(10), 811–815 (2021). https://doi.org/10.1007/s11018-021-01857-w

    Article  Google Scholar 

  15. Borovkov, V.M.: Almanac of Modern Metrology. No 1, 109–115 (2019)

    Google Scholar 

  16. Aslanyan, A.E.: Prikl. Fizika. No 4, 85–91 (2020)

    Google Scholar 

  17. Aslanyan, A.E.: Almanac of Modern Metrology. No 1, 67–71 (2021)

    Google Scholar 

  18. Gavrilkin, S.M., Temnickij, I.N., Jur’ev, B.V., Shhipunov, A.N., Avdeenko, O.V.: Almanac of Modern Metrology. No 5, 21–32 (2015)

    Google Scholar 

  19. Gavrilkin, S.M., Temnickij, I.N., Jur’ev, B.V., Avdeenko, O.V., Sorokina, P.V.: Pribory. No 10(196), 28–30 (2016)

    Google Scholar 

  20. Janardhanraj, S., Karthick, S.K., Farooq, A.: Prog. Energ. Combust. 93, 101042 (2022). https://doi.org/10.1016/j.pecs.2022.101042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Gavrilkin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 9, pp. 4–10, September 2023. Russian DOI: https://doi.org/10.32446/0368-1025it.2023-9-4-10

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted 06/15/2023. Accepted 09/10/2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilkin, S.M., Borovkov, V.M., Aslanyan, A.E. et al. GET 43-2022 State Primary Standard for the unit of excess pressure within the static pressure range of 10–1600 MPa and the pulse pressure range of 1–1200 MPa and the effective area of piston-cylinder assemblies in deadweight testers within the range of 0.05–1 cm2. Meas Tech 66, 637–646 (2023). https://doi.org/10.1007/s11018-024-02276-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-024-02276-3

Keywords

UDC

Navigation