Skip to main content
Log in

GET 196-2023 State Primary Standard for the units of the mass (molar) fraction and mass (molar) concentration of components in liquid and solid substances and materials based on spectral methods

  • STATE STANDARDS
  • Published:
Measurement Techniques Aims and scope

Abstract

The need for developing metrological support for the measurement of gas components in metals and alloys and trace impurities in various industrial products (metallurgy, medicine, etc.) is analyzed. The authors examine the needs of industries for the development of more sensitive measurement methods and procedures, as well as an expanded nomenclature of reference materials having a lower error (uncertainty) of the certified characteristic than the certified characteristic error of currently existing type-approved composition reference materials. Reference materials developed for use in state regulation should be traceable to the primary standards of mass (molar) fraction and mass (molar) concentration: GET 196-2023 State Primary Standard for the units of the mass (molar) fraction and mass (molar) concentration of components in liquid and solid substances and materials based on spectral methods; GET 176-2019 State Primary Standard for the units of mass (molar, atomic) fraction and mass (molar) concentration of components in liquid and solid substances and materials based on coulometry; GET 217-2018 State Primary Standard for the units of mass fraction and mass (molar) concentration of inorganic components in aqueous solutions based on gravimetric and spectral methods; GET 208-2019 State Primary Standard for the units of mass (molar) fraction and mass (molar) concentration of organic components in liquid and solid substances and materials based on liquid and gas chromatography-mass spectrometry with isotope dilution and gravimetry.

The need for and ways of developing and creating a metrological support system for Raman spectrometry in the Russian Federation are analyzed, including to confirm the traceability of units for quantitative Raman analysis. To address these issues, GET 196-2023 includes sulfur, carbon, and hydrogen analyzers; an inductively coupled plasma mass spectrometer; and a Raman system. The composition and metrological characteristics of GET 196-2023 are presented. In addition, a draft state hierarchy scheme for instruments measuring mass (molar) fraction and mass (molar) concentration, as well as fluorescence, of components in liquid and solid substances and materials based on spectral methods has been developed and presented. The draft state verification scheme establishes the procedure and methods for transferring the units of the mass (molar) fraction (in absolute units) and mass (molar) concentration of components (grams per cubic decimeter; mole per cubic decimeter) from GET 196-2023 to measuring instruments with indication of measurement error and uncertainty. Also, secondary and working standards are used to transfer relative fluorescence units to measuring instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Arshin. Available at: https://fgis.gost.ru/fundmetrology/registry (accessed 07/19/2023).

  2. Order of the Federal Agency for Technical Regulation and Metrology No. 605 of March 21, 2023 “On approval of the State Primary Standard for the units of the mass (molar) fraction and mass (molar) concentration of components in liquid and solid substances and materials based on spectral methods.”.

References

  1. A. V. Sobina, G. I. Terentyev, A. Yu. Shimolin, and V. M. Zyskin, Al’m. Sovr. Metrol., No. 2(14), 26–34 (2018).

  2. Dobrovolskiy, V.I., Oganyan, N.G., Prokunin, S.V.: Ref. Mater., 14. No 3–4, 51–56 (2018). https://doi.org/10.20915/2077-1177-2018-14-3-4-51-56

    Article  Google Scholar 

  3. Dobrovol’skii, V.I., Stakheev, A.A., Stolboushkina, T.P.: Meas. Tech. 61(11), 1041–1044 (2019). https://doi.org/10.1007/s11018-019-01546-9

    Article  Google Scholar 

  4. Shokhina, O.S.: M. Yu. Medvedevskikh M. P. Krasheninina S. G. Makarova A. I. Krylovb I. Yu. Tkachenkob A. Yu. Mikheeva ref. Mater. 13(1), 9–26 (2017). https://doi.org/10.20915/2077-1177-2017-13-1-9-26

    Article  Google Scholar 

  5. N. P. Muravskaya, A. V. Ivanov, Ya. I. Ermakova, and I. N. Zyablikova, in: Proc. II International Scientific Conference “Reference Materials in Measurement and Technology” [in Russian], Yekaterinburg, Russia, September 14–18, 2015; Ural Scientific Research Institute of Metrology Publ., Yekaterinburg (2015); p. 46.

  6. Chugunova, M.M., Gryazskikh, N.Y., Zyablikova, I.N., Ivanov, A.V., Shоbina, A.N.: Meas. Stand. Ref. Mater. 17(3), 35–44 (2021). https://doi.org/10.20915/2687-0886-2021-17-3-35-44

    Article  Google Scholar 

  7. Ermakova, I.I., Ivanov, A.V., Zyablikova, I.N., Shobina, A.N.: Ref. Mater. 15(3), 23–32 (2019). https://doi.org/10.20915/2077-1177-2018-15-3-23-32

    Article  Google Scholar 

  8. M. M. Chugunova, N. Yu. Gryazskikh, I. N. Zyablikova, A. V. Ivanov, and A. N. Shobina, In: S. V. Medvedevskikh, E. P. Sobina, O. N. Kremleva, and M. V. Okrepilov (eds.), Reference Materials in Measurement and Technology. RMMT, Springer, Cham. (2020); pp. 29–38. https://doi.org/10.1007/978-3-031-06285-8_3

  9. Wasserman, A.M.: Opredelenie Gazov v Metallakh [Determination of Gases in Metals; in Russian. Nauka, Publ., Moscow (1976)

    Google Scholar 

  10. Fromm, E.: Gazy i Uglerod v Metallakh [Gases and Carbon in Metals; in Russian. Metallurgiya Publ, Moscow (1980)

    Google Scholar 

  11. S. B. Shubina, in: Abstracts of Papers XIV Ural Conference on Spectroscopy [in Russian], Zarechny, Russia, September 14–16, 1999; Association “Uralanalit” Publ., Zarechny (1999).

  12. Safonova, E.A.: Practical experience of application of the hydrogen analyzer EMGA-621W ‘HORIBA’ for the analysis of copper rolled wire in ‘ELKAT’ ltd. Anal. Control 11(1), 59–60 (2007)

    Google Scholar 

  13. “Hydrogen in solid samples. Analytical methodology HORIBA JOBIN YVON,” Anal. Control, 11, No. 1, 52–58 (2007).

  14. Yu, A.: Karpov and I. P. Alimarin. J. Anal. Chem. 34(7), 1402–1410 (1979)

    Google Scholar 

  15. Yu. A. Karpov, V. B. Baranovskaya, and M. N. Filippov, in: Abstracts of the XV Conference “High-Purity Substances and Materials. Receipt, Analysis, Application” [in Russian], Nizhny Novgorod, May 28–31, 2018; р. 6.

  16. Mosichev, V.I., Kalinkin, I.P., Nikolaev, G.I.: Metally i Splavy. Analiz i Issledovanie. Analiticheskij Kontrol’ Sostava Materialov Chernoj i Cvetnoj Metallurgii [Metals and Alloys. Analysis and Research. Analytical Control of the Composition of Ferrous and Non-ferrous Metallurgy Materials; in Russian. Professional Publ, St. Petersburg (2007)

    Google Scholar 

  17. Zinina, O.T.: Selected Issues of Forensic. No, vol. 4. Medical, Examination, pp. 99–105 (2001)

    Google Scholar 

  18. B. L. Batista, Ja. L. Rodrigues, Ju. A. Nunes, V. C. de Oliveira Souza, and Jr. F. Barbosa, Anal. Chim. Acta, 639, No. 1–2, pp. 13–18 (2009). https://doi.org/10.1016/j.aca.2009.03.016

  19. Kira, C.S., Sakuma, A.M., Gouveia, N.: J. Appl. Pharm. Sci. 4(5), 39–45 (2014). https://doi.org/10.7324/JAPS.2014.40507

    Article  CAS  Google Scholar 

  20. Tarnowski, C.P., Ignelzi Jr., M.A., Morris, M.D.: J. Bone Miner. RES 17(6), 1118–1126 (2002). https://doi.org/10.1359/jbmr.2002.17.6.1118

    Article  Google Scholar 

  21. Belozertsev, A.I., Cheremisina, O.V., El-Salim, S.Z., Manoilov, V.V.: Nauch. Priborostr., 27. No 2, 47–56 (2017). https://doi.org/10.18358/np-27-2-i4756

    Article  Google Scholar 

  22. Tobias, R.S., Koningstain, I.A., Mortensen, O.S., et al.: Primenenie Spektrov Kombinatsionnogo Rasseyaniya [Application of Raman Scattering Spectra (The Raman Effect). In: Anderson, A., Petrov, K.I., Publ, M. (eds.) Russian Moscow (1977)

  23. Loudon, R.: Adv Phys 13(52), 423–482 (1964). https://doi.org/10.1080/00018736400101051

    Article  CAS  ADS  Google Scholar 

  24. S. I. Isaenko, in: Proc. 17th Scientific Conference of Institute of Geology Komi NC UrO RAS “Structure, Substance, History of the Lithosphere of the Timan-North Ural Segment” [in Russian], Syktyvkar, December 10–12, 2008; Geoprint Publ., Syktyvkar (2008); pp. 116–118.

  25. Kiseleva, D.V.: Yearbook-2009, Tr. IGG UrO. RAS (157), 332–335 (2010)

  26. Huang, N., Short, M., Zhao, J., Wang, H., Lui, H., Korbelik, M., Zeng, H.: Opt. Express 19(23), 22892–22909 (2011). https://doi.org/10.1364/OE.19.022892

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Kalasinsky, K.S., Hadfield, T., Shea, A.A., Kalasinsky, V.F., Nelson, M.P.: Ja. Neiss A. J. Drauch G. S. Vanni P. J. Treado anal. Chem. 79, 2658–2673 (2007). https://doi.org/10.1021/ac0700575

    Article  CAS  Google Scholar 

  28. A. A. Lykina, D. N. Artemyev, V. Kukushkin, I. A. Bratchenko, N. S. Alexandrov, and V. P. Zakharov, in: IV International Conference and Youth School “Information Technologies and Nanotechnologies” [in Russian], Samara, April 24–27, 2018; Enterprise “New Technology” Publ., Samara (2018); рp. 233–238.

  29. Wang, J., Zhao, X., Li, D., Wen, Y., Wang, W., Wang, B., Xu, X., Bai, H., Liu, W.: Appl. Sci., 12. No 6, 3111 (2022). https://doi.org/10.3390/app12063111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Polunina.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, Vol. 66, No. 8, pp. 4–11, August 2023. Russian DOI: https://doi.org/10.32446/0368-1025it.2023-8-4-11

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted 06/13/2023. Accepted 08/04/2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.V., Gryazskikh, N.Y., Chugunova, M.M. et al. GET 196-2023 State Primary Standard for the units of the mass (molar) fraction and mass (molar) concentration of components in liquid and solid substances and materials based on spectral methods. Meas Tech 66, 543–552 (2023). https://doi.org/10.1007/s11018-023-02266-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02266-x

Keywords

UDC

Navigation