Skip to main content

Advertisement

Log in

Evaluation of the Efficiency of an Information and Measuring System for Monitoring the Temperature and Humidity of Grain Products

  • MEASUREMENTS IN INFORMATION TECHNOLOGY
  • Published:
Measurement Techniques Aims and scope

This study discusses the current issues of comprehensive automation of various technological processes of processing and storage of grain and grain products. A system for automated control of the technological processes of grain storage and processing at the corresponding enterprises is proposed. The system enables not only to assess the compliance of the parameters of these processes with technological regulations, but also to control the activities of technical personnel, as well as to reduce the financial and energy costs of enterprises. The main element of the automated system is considered, namely, the information and measuring system (IMS) for monitoring the temperature and humidity of grain products. Indirect, nondestructive methods for monitoring the parameters (humidity and temperature) of grain products are analyzed. We discuss the construction of a functional diagram of measuring transducers and further development of electronic devices of IMSs based on them. The efficiency of the IMS for monitoring the temperature and humidity of grain products was evaluated. Using such IMSs allows for tightening the control of the technological processes of grain storage and processing, thereby increasing the degree of control of technical devices for moisture measurement and thermometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. P. I. Kalandarov, O. S. Logunova, and S. M. Andreev, Scientific Foundations of Moisture Measurement, Monograph, Tashkent (2021).

  2. E. M. Zimin, M. S. Volkhonov, and I. B. Zimin, Results of Laboratory Studies of the Work of an Aerobic Grain Oxidizer, Proc. Int. Conf. Actual Problems of Agricultural Engineering Support, Yaroslavl, 3, pp. 58–62 (2004).

  3. S. I. Savosin and V. V. Soldatov, Automation of Grain and Air Moisture Control During Storage, Vestnik FGOU VPO “MAGU im. V. P. Goryachkina,” Agroinzh., 28, No. 3, 28–30 (2008).

  4. M. A. Berliner, Measurements of Humidity, Energiya, Moscow (1973).

  5. Theory and Practice of Express Moisture Control of Solid and Liquid Materials, Ed. E. S. Krichevsky, Energiya, Moscow (1980).

  6. A. A. Kovaleva, R. I. Saitov, A. S. Zaporozhets, and E. G. Parfenova, Methods for Calibrating Serial Microwave Moisture Meters, Izmer. Tekhn., No. 3, 72–76 (2017).

  7. P. Kalandarov, Z. Mukimov, O. Tursunov, D. Kodirov, and B. Erkinov, Study on Dielcometric Moisture Control Method Based on Capacitive Transducers, AIP Conf. Proc., 2686, Article ID 020016 (2022), https://doi.org/10.1063Z5.0114591.

  8. P. I. Kalandarov and D. A. Abdullaeva, IOP Conf. Ser.: Earth Environ. Sci., 1043, No. 1, Article ID 012012 (2022), https://doi.org/10.1088/1755-1315/1043/1/012012.

  9. P. I. Kalandarov and K. K. Abdullayev, IOP Conf. Ser.: Earth Environ. Sci., 1043, No. 1, Article ID 012011 (2022), https://doi.org/10.1088/1755-1315/1043/1/012011.

  10. P. I. Kalandarov and Z. M. Mukimov, Humidity Control During Hydrothermal Treatment of Grain and Their Processed Products, Proc. 8th Int. Conf. Indus. Eng., Eds. A. A. Radionov and V. R. Gasiyarov. ICIE 2022. Springer, Cham., 966–981, https://doi.org/10.1007/978-3-031-14125-6_94.

  11. R. I. Saitov, Microwave Moisture Measurement of Agricultural Products, Gilem, Ufa (2009).

  12. E. S. Krichevsky, A. G. Volchenko, and S. S. Galushkin, Moisture Control of Solid and Bulk Materials, Ed. E. S. Krichevsky, Energoatomizdat, Moscow (1987).

  13. Yu. V. Klokov, Theory of Moisture Removal. On Volume Heating of Food Products in the Microwave EMF, Khran. Pererabotka Sel’khozsyr’ya, No. 7, 29–31 (2003).

  14. I. F. Borodin, The Use of Microwave Energy in Agriculture, Knizhny Mir, Moscow (2012).

  15. P. A. Fedyunin et al., Microwave Thermomoisture, Mashinostroenie-1, Moscow (2004).

  16. M. M. Blagoveshchenskaya, E. B. Karelina, and D. Yu. Klekho, Development of a Software and Hardware Complex for Monitoring the Quality Indicators of Flour in the Flow, Proc. II Int. Sci.-Pract. Conf. Automation and Control of Technological and Business Processes in the Food Industry, Moscow, pp. 140–145 (2016).

  17. T. D. Japaridze, E. D. Shalamberidze, R. N. Meskhidze, et al., Capacitive Sensors and Laboratory Moisture Meters for Grain and Grain Products, CNIITEI VNPO Zernoprodukt, Series Elevator industry, Moscow (1990).

  18. A. V. Grachev and P. P. Churakov, Converter of Parameters of Contactless Capacitive Sensors for Conductodielmetric Measurements, Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk, 18, No. 4(7), 1363–1366 (2016).

  19. E. A. Chetverikov, A. P. Moiseev, and V. A. Kargin, Improvement of the Milk Thistle Drying Unit Due to Automation of the Humidity Measurement Process, Agrarn. Nauch. Zhur., No. 7, 52–55 (2015).

  20. A. F. Khairetdinova, R. I. Saitov, and R. G. Abdeev, Device for Monitoring wheat Grain Moisture in the Technological Drying Process, Izmer. Tekh., No. 3, 70–72 (2011).

  21. K. M. Aguilar-Castro, J. J. Flores-Prieto, and E. V. Madas-Melo, J. Mech. Sci. Technol., No. 28, 293–300 (2014), https:// doi.org/https://doi.org/10.1007/d2206-013-0964-3.

  22. V. V. Lisovsky and I. A. Titovitsky, Microwave Control in Agro-Industrial Complex Technological Processes, BGATU, Minsk (2013).

  23. G. A. Gulyaev, Automation of Post-Harvest Processing and Grain Storage, Agropromizdat, Moscow (2003).

    Google Scholar 

  24. P. I. Kalandarov, High-Frequency Moisture Meter for Measuring the Moisture Content of Grain and Grain Products, Izmer. Tekhn., No. 4, 65–71 (2022), https://doi.org/10.32446/0368-1025it.2022-4-65-71.

  25. G. P. Petrov, Modern Russian Equipment for Determining the Moisture Content of Agricultural Products, Khleboprodukty, No. 12, 22–25 (2018).

  26. A. Aichholzer, C. Schuberth, H. Mayer, et al., Eur. J. Wood Prod., 76, 89–103 (2018), https://doi.org/10.1007/s00107-017-1203-x.

    Article  Google Scholar 

  27. B. P. Iskandarov and P. I. Kalandarov, Analysis of the Influence of Factors on the Results of Material Moisture Measurements at High Frequencies, Izmer. Tekh., No. 7, 64–66 (2013).

  28. M. Yu. Narkevich, O. S. Logunova, P. I. Kalandarov, et al., IOP Conf. Ser.: Earth Environ. Sci., 939, No. 1, Article ID 012031 (2021), https://doi.org/10.1088/1755-1315/939/1/012031.

  29. P. I. Kalandarov, Evaluation of the accuracy of the Thermogravimetric Method for Measuring Moisture Content and the efficiency of this method in the Agro-Industrial Complex, Metrologiya, No. 2, 44–62 (2021).

  30. M. Yu. Narkevich, O. S. Logunova, P. I. Kalandarov, et al., IOP Conf. Ser.: Earth Environ. Sci., 939, No. 1, Article ID 012030 (2021), https://doi:https://doi.org/10.1088/1755-1315/939/1/012030.

  31. P. I. Kalandarov, Z. M. Mukimov, and A. M. Nigmatov, Automatic devices for Continuous Moisture Analysis of Industrial Automation Systems, Eds. A. A. Radionov and V. R. Gasiyarov, Proc. 7th Int. Conf. Industrial Eng. ICIE 2021, Springer, Cham., pp. 810–817 (2021), https://doi.org/10.1007/978-3-030-85230-6_96.

  32. A. Parsokhonov, P. Kalandarov, O. Olimov, and A. Akhmedov, IOP Conf. Ser.: Earth Environ. Sci., 1076, No. 1, Article ID 012010 (2022), https://doi.org/10.1088/1755-1315/1076/1/012010.

  33. A. Nikolaev, O. Logunova, E. Garbar, M. Arkulis, and P. Kalandarov, ACM Int. Conf. Proc. Ser., pp. 23–27 (2021), https://doi.org/10.1145/3502814.3502818.

  34. A. Marynowicz and A. Kucharczyk, Measurements, 185, Article ID 110054 (2021), https://doi.org/10.1016/j.measurement.2021.110054.

  35. Lekshmi S. U. Susha, D. N. Singh, and Maryam S. B., Measurement, No. 54, 92–105 (2014), https://doi.org/10.1016/j.measurement.2014.04.007.

  36. C. Moron, L. Garcia-Fuentevilla, A. Garcia, and A. Moron, Sensors, 16, No. 5, Article ID 697 (2016), https://doi.org/10.3390/s16050697.

  37. P. K. Larsen, J. Archit. Conserv., 18, No. 1, 47–62 (2012), https://doi.org/https://doi.org/10.1080/13556207.2012.10785103.

    Article  Google Scholar 

  38. J. Dahlen, L. Schimleck, and E. Schilling, Forests, 11, No. 4, 479 (2020), https://doi.org/https://doi.org/10.3390/f11040479.

    Article  Google Scholar 

  39. G. I. Ikramov and P. I. Kalandarov, Measurement of the Moisture Content of Grain and Grain Products by the Microwave Method: the Effect of Heterogeneity in Grain Density on the Mass Ratio of Moisture, Izmer. Tekh., No. 9, 71–76 (2022), https://doi.org/10.32446/0368-1025it.2022-9-71-76.

  40. P. I. Kalandarov and G. I. Ikramov, Automation of the Process of Monitoring the Humidity, Temperature of Grain and Air in the Warehouses of Milling Plants, Elektron. Periodich. Nauch. Zhur. SCI-ARTICLE.RU, No. 108, 50–62 (2022). URL: https://sci-article.ru/number/08_2022.pdf (date of access: 02/28/2023).

  41. P. I. Kalandarov, G. I. Ikramov, and Z. M. Mukimov, Patent Republic of Uzbekistan UZ FAR 02103 (31.10.2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Kalandarov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 4, pp. 23–30, April, 2023. DOI: https://doi.org/10.32446/0368-1025it.2023-4-23-30.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalandarov, P.I., Ikramov, G.I. Evaluation of the Efficiency of an Information and Measuring System for Monitoring the Temperature and Humidity of Grain Products. Meas Tech 66, 237–243 (2023). https://doi.org/10.1007/s11018-023-02216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02216-7

Keywords

Navigation