Skip to main content
Log in

Measurement of the Thermal Diffusivity of Optical Materials and Products by a New Thermographic Express Method That Does Not Require Cutting Samples Out of the Bulk

  • THERMOPHYSIC MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

Thermal diffusivity a and thermal conductivity λ are important parameters for many structural and functional material applications. These parameters determine the intensity of heat transfer, the quality of thermal insulation, the rate of heating/cooling, the efficiency of power equipment, as well as the possibility of reaching a stationary mode. In laser technologies, a and λ define the radiation resistance of the optical components of a system. In laser technologies involving material removal, these parameters determine the speed and quality of machining. At present, the majority of methods for measuring a and λ in solid materials require cutting out samples of a certain geometry, which makes such methods unsuitable for testing finished products. In this paper, we propose an express method for determining a and λ in translucent materials, which does not require cutting samples out of an object under inspection. This method implies registration and analysis of a nonstationary temperature field on the surface of a test object using a high-speed thermal imaging camera. An unsteady heating spot is created by a focused laser beam. The laser is operated in the mode of intermittent switching and continuous irradiation under constant intensity during the entire period of measurements. The heat propagated from this spot to the periphery forms a nonstationary temperature field, which contains information about a and λ. The a value is derived from the primary data using original algorithms and software. The dynamic temperature field is recorded by a thermal camera, a noncontact and high-speed device capable of processing a large amount of information (each of the many hundreds of thousands of pixels of a professional thermal imager matrix is a temperature sensor in a small surface area). The specifics of measuring thermal diffusivity a and thermal conductivity λ in translucent materials of laser beam optics is noted. Thus, the low radiation absorption coefficient and the possible curvature of the surface (for example, in lenses) require special measures. Due to the large amount of information contained in the dynamic patterns of thermal field and the possibility of averaging over a large data array, the RMS of the thermal diffusivity measurement does not exceed 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. S. Platunov, V. V. Baranov, S. E. Buravoy, and V. V. Kurepin, Teplofi zicheskie Izm., St. Petersburg, BIONT Publ. (2010).

  2. V. P. Vavilov Infrakrasnaya Termografiya i Teplovoj Kontrol', Moscow, Spektr Publ. (2013).

  3. D. Yu. Golovin, A. I. Tyurin, A. A. Samodurov, A. G. Divin, and Yu. I. Golovin, Termograficheskie Metody Nerazrushayushchego Ekspress-Kontrolya. Moscow, Tekhnosfera Publ. (2018).

    Google Scholar 

  4. A. G. Grigoriants, Osnovi Lasernoy Obrabotki Materialov, Moscow, Mashinostroenie Publ. (1989).

    Google Scholar 

  5. A. A. Manenkov and A. M. Prokhorov, Sov. Phys. Usp., 29, 104–122 (1986), https://doi.org/https://doi.org/10.1070/PU1986v029n01ABEH003117.

    Article  ADS  Google Scholar 

  6. S. Papernov, Defect induced damage, Ch. 3 in book: Laser-induced damage in optical materials (Ed. Ristau D.). CRC Press pp. 25–73 (2015).

  7. D. Klein, E. Eisfeld, and J. Roth, J. Phys. D: Appl. Phys., 54, Article ID 015103 (2021), https://doi.org/10.1088/1361-6463/abb38e.

  8. A. Brown, D. Bernot, A. Ogloza, K. Olson, J. Thomas, and J. Talghader, Scientific Reports, No. 9, 635 (2019), https://doi.org/https://doi.org/10.1038/s41598-018-37337-5.

    Article  Google Scholar 

  9. M. Chen, W. Ding, J. Cheng, H. Yang, and Q. Liu, Appl. Sci., No. 10, 6642 (2020), https://doi.org/10.3390/app10196642.

  10. Femtosecond Laser Micromachining. Photonic and Microfluidic Devices in Transparent Materials (Eds. Osellame R., Cerullo G., Ramponi R.). Berlin-Heidelberg, Springer-Verlag (2012). https://doi.org/10.1007/978-3-642-23366-1

  11. F. Sima, K. Sugioka, R. M. Va'zquez, R. Osellame, L. Kelemen, and P. Ormos, Nanophotonics., 7, No. 3, 613–634 (2018), https://doi.org/0.1515/nanoph-2017-0097.

  12. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity, J. Appl. Phys., 32, No. 9, 1679–1684 (1961).

    Article  ADS  Google Scholar 

  13. F. Cernuschi, P. Bison, A. Figari, S. Marinetti, and E. Grinzato, Int. J. Thermophys., 25, No. 2, 439–457 (2004), https://doi.org/10.1023/B:IJOT.0000028480.27206.cb.

  14. L. Vozar and W. Hohenauer, High Temp. — High Press., 35/36, 253–264 (2003/2004), https://doi.org/10.1068/htjr119.

  15. H. Dong, B. Zheng, and F. Chen, Infrared Phys. Technol., 73, 130–140 (2015), https://doi.org/https://doi.org/10.1016/j.infrared.2015.09.021.

    Article  ADS  Google Scholar 

  16. T. Kruczek, W. P. Adamczyk, and R. A. Bialecki, Int. J. Thermophys., 34, 467–485 (2013), https://doi.org/https://doi.org/10.1007/s10765-013-1413-3.

    Article  ADS  Google Scholar 

  17. R. L. McMasters and R. B. Dinwiddie, J. Thermophys. Heat Transfer., 28, No. 3, 518–523 (2014), https://doi.org/https://doi.org/10.2514/1.T4189.

    Article  Google Scholar 

  18. W. Adamczyk, Z. Ostrowski, and A. Ryfa, Measurement, 165, Article ID 108078 (2020), https://doi.org/10.1016/j.measurement.2020.108078.

  19. L. Wang, M. Gandorfer, T. Selvam, and W. Schwieger, Materials Lett., 221, 322–325 (2018), https://doi.org/https://doi.org/10.1016/j.matlet.2018.03.157.

    Article  Google Scholar 

  20. R. Coquard and B. Panel, Int. J. Therm. Sci., 48, 747–760 (2009), https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2008.06.005.

    Article  Google Scholar 

  21. A. Salazar, A. Mendioroz, E. Apiñ aniz, C. Pradere, F. Noë l, and J.-C. Batsale, Meas. Sci. Technol., 25, Article ID 035604 (2014), https://doi.org/10.1088/0957-0233/25/3/035604.

  22. N. W. Pech-May, A. Mendioroz, and A. Salazar, Rev. Sci. Inst. 85, Article ID 104902-1–104902-6 (2014), https://doi.org/10.1063/1.4897619.

  23. S. Graham, D. McDowell, and R. Dinwiddie, In-Plane Thermal Diffusivity Measurements of Orthotropic Materials, Therm. Conductiv., 24, 241–252 (1999).

    Google Scholar 

  24. F. Cernuschi, A. Russo, L. Lorenzoni, and A. Figari, Rev. Sci. Instrum, 72, No. 10, Article ID 3988–3995 (2001), https://doi.org/10.1063/1.1400151.

  25. F. Murphy, T. Kehoe, M. Pietralla, R. Winfield, and L. Floyd, Int. J. Heat Mass Transf., 48, 1395–1402 (2005), https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.046.

    Article  Google Scholar 

  26. S. W. Kim, J. C. Kim, and S. H. Lee, Int. J. Heat Mass Transf., 49, Nos. 3–4, 611–616 (2006), https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.050.

    Article  Google Scholar 

  27. T. Kehoe, F. Murphy, and P. A. Kelly, Int. J. Thermophys., 30, 987–1000 (2009), https://doi.org/https://doi.org/10.1007/s10765-009-0574-6.

    Article  ADS  Google Scholar 

  28. J. M. Roche and D. L. Balageas, Quantitative InfraRed Thermography J., 12, No. 1, 1–23 (2015), https://doi.org/https://doi.org/10.1080/17686733.2014.996341.

    Article  Google Scholar 

  29. D. P. Almond, S. L. Angioni, and S. G. Pickering, NDT&E Int., 87, 7–14 (2017), https://doi.org/https://doi.org/10.1016/j.ndteint.2017.01.003.

    Article  Google Scholar 

  30. D. Palumbo, P. Cavallo, and U. Galietti, NDT&E Int., 102, 254–263 (2019), https://doi.org/https://doi.org/10.1016/j.ndteint.2018.12.011.

    Article  Google Scholar 

  31. F. Ciampa, P. Mahmoodi, F. Pinto, and M. Meo, Sensors, 18, No. 2, 609 (2018), https://doi.org/https://doi.org/10.3390/s18020609.

    Article  ADS  Google Scholar 

  32. U. Hammerschmidt, J. Hameury, R. Strnad, E. Turzó -Andras, and J. Wu, Int. J. Thermophys., 36, 1530–1544 (2015), https://doi.org/10.1007/s10765-015-1863-x.

  33. D. Yu. Golovin, A. G. Divin, A. A. Samodurov, A. I. Tyurin, and Yu. I. Golovin, Temperature Diffusivity Measurement and Nondestructive Testing Requiring no Extensive Sample Preparation and Using Stepwise Point Heating and IR Thermography, Chapter 7, in Failure Analysis. InTechOpen, London, UK, pp. 125–150 (2019), https://doi.org/10.5772/intechopen.88302.

  34. D. Yu. Golovin, A. G. Divin, A. A. Samodurov, et al., Meas. Tech., 62, No. 8, 714–721 (2019), https://doi.org/https://doi.org/10.1007/s11018-019-01684-0.

    Article  Google Scholar 

  35. H. C. Carslaw and J. C. Jaeger, Conduction of Heat in Solid, Oxford, Oxford University Press (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 1, pp. 36–43, January, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Samodurov, A.A., Golovin, D.Y. et al. Measurement of the Thermal Diffusivity of Optical Materials and Products by a New Thermographic Express Method That Does Not Require Cutting Samples Out of the Bulk. Meas Tech 66, 36–44 (2023). https://doi.org/10.1007/s11018-023-02187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02187-9

Keywords

Navigation