Skip to main content
Log in

Level-Measuring Installation UUE1r-N-20 Based on a Laser Interferometric Measuring System

  • MECHANICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

Methods of increasing the accuracy of liquid level measurements are considered. The level-measuring installation UUE1r-N-20 based on the XL-80 laser interferometric measuring system with a direct liquidlevel measurement capability in the range of 0–20 m is presented. The principle of operation of the measuring system of the level-measuring installation is based on measuring the linear movements of the float in the liquid relative to the absolute fixed zero of the level-measuring installation. A mathematical model is provided for determining the liquid level using a level-measuring installation, taking into account the effect of environmental parameters on the elements of the measuring system. The metrological characteristics of the level-measuring installation are calculated, including the uncertainty of the liquid level measurements. The confidence limits of the total error of measuring a unit of the liquid level with a confidence probability of 0.95 are ±0.11 mm when transferring a liquid level unit to the standards or liquid level measuring instruments with an absolute fixed zero, and ±0.044 mm when transferring a liquid level unit to the standards or liquid level measuring instruments without an absolute fixed zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Decree No. 737-r of the RF Government "On approval of the Strategy for Ensuring the Uniformity of Measurements in the Russian Federation until 2025" dated April 19, 2017.

  2. GOST 8.321-78. GSI. Industrial applicator level gauges and float-type level gauges. Methods and means of calibration.

  3. GOST 8.570-2000. GSI. Steel vertical cylindrical tanks. Verification methods.

  4. GOST OIML R 111-1-2009. GSI. Weights of classes E1, E2, F1, F2, M1, M1-2, M2, M2-3 and M3. Part 1. Metrological and technical requirements.

  5. GOST 34100.3-2017/ISO/IEC Guide 98-3:2008. Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement.

  6. GOST 8.381-2009. GSI. Standards. Methods of expression of precision.

  7. Rosstandart order No. 1996 "On Approval of the standard of the FSUE VNIIM named after D.I. Mendeleyev."

References

  1. V. Sh. Bikkulov, A. V. Kondakov, I. O. Garanin, and V. M. Migranov, Opisanie gosudarstvennogo spetsial’nogo etalona edinitsy dliny (urovnya) v diapazone 0.01–20 m, Zakonod. Prikl. Metrolog., 129, No. 2, 9–11 (2014).

  2. V. Sh. Bikkulov, A. V. Kondakov, and I. Frometa Planche, Autom. Telemech. Commun. Oil Ind., No. 3, 15–17 (2018), https://doi.org/10.30713/0132-2222-2018-3-15-17.

  3. V. P. Koronkevich, A. G. Poleshuk, A. G. Sedukhin, and G. A. Lenkova, Lazernye interferometricheskie i difraktsionnye sistemy, Comp. Optics, 34, No. 1, 4–23 (2010).

    Google Scholar 

  4. R. G. Romanova, L. R. Marsutdinova, and E. Yu. Sitnikova, Metrologicheskoe obespechenie sredstv izmerenii urovnya zhidkikh i sypuchikh veshchestv, Vestn. Tekhnol. Univ., 23, No. 6, 100–106 (2020).

    Google Scholar 

  5. S. V. Makartichyan, S. S. Zhabin, and N. S. Kuznetsova, Sravnitel’nyi analiz sushchestvuyushchikh metodov izmereniya urovnya zhidkostei v rezervuarakh, Energoresursosber.: Promyshl. Ttransport, 35, No. 2, 36–41 (2021).

  6. B. B. Vinokurov, Metrologiya i izmeritel’naya tekhnika. Urovnemetriya zhidkikh sred. Uchebnoe posobie dlya akademicheskogo bakalavriata (Metrology and Measuring Technique. Level Measurement of Liquids: Textbook Manual for Academic Bachelor’s Degree), Yurait Publ., Moscow (2016).

  7. A. V. Kulikov, Issledovanie tochnosti lazernogo interferometra peremeshchenii, Interekspo Geo-Sibir’, 5, No. 2, 82–87 (2014).

    Google Scholar 

  8. I. O. Garanin, A. V. Kondakov, V. Sh. Bikkulov, and L. R. Ramazanova, Issledovanie zavisimosti glubiny pogruzheniya poplavka ot atmosfernogo davleniya i otnositel’noi vlazhnosti vozdukha, Vestn. Kazansk. Tekhnol. Univ., 17, No. 2, 126–128 (2014).

    Google Scholar 

  9. A. A. Mamontov, V. P. Yartsev, and A. A. Maksimova, Vliyanie plotnosti ekstruzionnogo penopolistirola Penopleks® na ego fizikomekhanicheskie svoistva, Trans. TSTU, 20, No. 2, 342–348 (2014).

    Google Scholar 

  10. Zh. F. Kudryashova and A. G. Chunovkina, Meas. Tech., 46, No. 6, 559–561 (2003), https://doi.org/https://doi.org/10.1023/A:1025455726761.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sh. Bikkulov.

Additional information

Translated from Metrologiya, No. 9, pp. 45–51, September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikkulov, V.S., Kondakov, A.V. Level-Measuring Installation UUE1r-N-20 Based on a Laser Interferometric Measuring System. Meas Tech 65, 666–673 (2022). https://doi.org/10.1007/s11018-023-02137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02137-5

Keywords

Navigation