Skip to main content
Log in

Get 107-2019 Special State Primary Standard of the Unit of Electrical Capacitance in the Frequency Range from 1 to 300 MHz

  • Published:
Measurement Techniques Aims and scope

This paper presents the composition and characteristics of GET 107-2019 Special State Primary Standard of the unit of electrical capacitance in the frequency range of 1–300 MHz. The upper limit of the frequency range for reproducing electric capacitance was expanded to 300 MHz due to the development of a new reference installation with an operating frequency of 300 MHz. The operational principles of the installation and algorithms for processing measurement results are considered. The residual relative systematic error of GET107-2019 ranges from 5·10–5 to 1·10–3 (depending on the operating frequency). The relative standard deviation of the measurement result when reproducing the unit ranges from 3·10–6 to 3·10–4, which exceeds the capabilities of national standards in other countries. An updated State Verification Scheme for measuring electrical capacitance in the frequency range of 1–300 MHz was developed and approved. GET 107-2019, along with its subordinate standards and measuring instruments, is widely used in microand nanoelectronics, biomedicine, radioelectronic industry, instrument engineering, as well as in the development and production of modern materials and equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Order of the Federal Agency for Technical Regulation and Metrology of 27.12.2019 No. 3388 “On approval of the Special State Primary Standard of the unit of electrical capacitance in the frequency range from 1 to 300 MHz”.

    Order of the Federal Agency on Technical Regulation and Metrology of 02.06.2021 No. 926 “On approval of the State Verification Scheme for measuring instruments of electrical capacitance in the frequency range from 1 to 300 MHz.”

  2. KCDB. URL: https://www.bipm.org/kcdb/ (access date: 02.07.2022).

  3. APMP.EM-S15. URL: https://www.bipm.org/kcdb/comparison?id=579 (access date 02.07.2022).

References

  1. A. M. Shilov, E. Ju. Ul'janov, A. E. Mandrueva, and S. D. Zagajnov, "Razrabotka i issledovanie universal'nogo avtomatizirovannogo komparatora dlja peredachi edinicy jelektricheskoj emkosti ot GPSE edinicy jelektricheskoj emkosti (GET 107-2019) v diapazone chastot ot 1 do 300 MGc rabochim jetalonam – meram jelektricheskoj emkosti", Proc. XII All-Russian Scientific and Technical Conference "Metrology in Radioelectronics," Mendeleevo, September 21–23, 2021, Mendeleevo, FSUE "VNIIFTRI" Publ., pp. 266–270 (2021).

  2. A. P. Kovchavcev, Struktury metall–dijelektrik–poluprovodnik na osnove arsenida indija: Doctoral dissertation in Mathematics and Physics Sciences (IFP SO RAN, Novosibirsk (2003).

    Google Scholar 

  3. V. V. Talanov and A. R. Schwartz, IEEE Trans. Microw. Theor. Tech., 57, No. 5, 1224–1229 (2009), https://doi.org/https://doi.org/10.1109/TMTT.2009.2017352.

    Article  ADS  Google Scholar 

  4. K.-M. Guenther, H. Witte, A. Krost, S. Kontermann, and W. Schade, Appl. Phys. Lett., 100, No. 4, Article ID 042101 (2012), https://doi.org/10.1063/1.3679380.

  5. E. I. Goldman, A. I. Levashova, S. A. Levashov, V. G. Naryshkina, and G. V. Chucheva, Sovremennye Informatsionnye i Elektronnye Tekhnologii, 2, No. 15, 130–131 (2014).

    Google Scholar 

  6. N. V. Cherepin, Vacuum Properties of Materials for Electronic Devices, Moscow, Sovetskoe Radio Publ. (1966).

    Google Scholar 

  7. S. Demin, A. Juzhalkin, S. Pashkov, et al., “Issledovanie vysokochastotnyh kvarcevyh rezonatorov sreza SC,” Komponenty i Tekhnologii, 2, No. 235, 44–47 (2021).

    Google Scholar 

  8. N. Reinecke and D. Mewes, Meas. Sci. Technol., 7, No. 3, 233–246 (1996), https://doi.org/https://doi.org/10.1088/0957-0233/7/3/004.

    Article  ADS  Google Scholar 

  9. U. Kaatze, Meas. Sci. Technol., 24, No. 1, Article ID 012005 (2013), https://doi.org/10.1088/0957-0233/24/1/012005.

  10. R. Wajman, P. Fiderek, H. Fidos, T. Jaworski, J. Nowakowski, D. Sankowski, and R. Banasiak, Meas. Sci. Technol., 24, No. 6, Article ID 065302 (2013), https://doi.org/10.1088/0957-0233/24/6/065302.

  11. M.N. Surdu, A.L. Lameko, D.M. Surdu, S.N. Kursin, Meas. Tech., 55, 816–825 (2012), https://doi.org/https://doi.org/10.1007/s11018-012-0045-5.

    Article  Google Scholar 

  12. I. N. Lukhverchik and T. G. Sosnovskaya, “Comparison of impedances of heterogeneous quantities when disseminating electric capacitance unit from the (active) electric resistance unit,” Metrologija i Priborostroenie, 2, No. 89, 20–23 (2020).

    Google Scholar 

  13. N.A. Vihareva, Vest. SSUGT, 25, No. 4, 221–228 (2020), https://doi.org/10.33764/2411-1759-2020-25-4-221-228.

  14. N. N. Morozov, A. I. Mazanik, and E. Zh. Akimbaev, "Rapid method for measuring dose per pulse of high intensity radiation," Nauch. i Obrazovat. Probl. Grazhdansk. Zashhity, 2, No. 49, 55–60 (2021).

    Google Scholar 

  15. L. M. Ignatov and A. S. Kuskov, Patent RU 71773 U1, Byull. Izobr., no. 8 (2008).

  16. P. A. Kyaw, A. L. F. Stein, and C. R. Sullivan, IEEE App. Power Electron. Conf. Exp. (APEC), 2519–2526 (2017), https://doi.org/10.1109/APEC.2017.7931052.

  17. A. R. Clarke and C. N. Eberhardt, Microscopy Techniques for Materials Science, Woodhead Publishing (2002).

  18. W. J. K. Raymond, Ch. K. Chakrabarty, G. Ch. Hock, and Ah. B. Ghani, Measurement, 46, No. 10, 3796–3801 (2013), https://doi.org/https://doi.org/10.1016/j.measurement.2013.06.039.

    Article  ADS  Google Scholar 

  19. J. Heath and P. Zabierowski, “Capacitance Spectroscopy of Thin-Film Solar Cells,” in: Adv. Charact. Tech. Thin Film Solar Cells (eds. D. Abou-Ras, T. Kirchartz and U. Rau), pp. 81–105 (2011), https://doi.org/10.1002/9783527636280.ch4.

  20. P. A. Ushakov, G. D. Baboshkin, S. V. Stojchev, and V. G. Gravshin, “Dvukhpolyusnye ehlementy s fraktal’nym impedansom i ikh primenenie v radiotekhnike i svyazi,” Vest. IzhGTU imeni M. T. Kalashnikova, 23, No. 1, 75–105 (2020).

    Article  Google Scholar 

  21. Final Report COOMET.EM-S8 (469/RU-a/09), https://www.bipm.org/utils/common/pdf/final_reports/EM/S8/COOMET.EM-S8.pdf (accessed: 21.07.2022).

  22. M. W. Keller, A. L. Eichenberger, J. M. Martinis, and N. M. Zimmerman, Science, 285, No. 5434, 1706–1709 (1999), https://doi.org/https://doi.org/10.1126/science.285.5434.1706.

    Article  Google Scholar 

  23. M. W. Keller, N. M. Zimmerman, and A. L. Eichenberger, Metrologia, 44, No. 6, 505–512 (2007), https://doi.org/https://doi.org/10.1088/0026-1394/44/6/010.

    Article  ADS  Google Scholar 

  24. H. Scherer, J. Schurr, and F.J. Ahlers, Metrologia, 54, No. 3, 322–338 (2017), https://doi.org/https://doi.org/10.1088/1681-7575/AA65F9.

    Article  ADS  Google Scholar 

  25. G. Yamahata, S.P. Giblin, M. Kataoka, T. Karasawa, and A. Fujiwara, App. Phys. Lett., 109, No. 1, Article ID 013101 (2016), https://doi.org/10.1063/1.4953872.

  26. S. V. Sherstobitov, M. V. Karpova, and M.A. Tertychnaya, Meas. Tech., 63, No. 2, 145–150 (2020), https://doi.org/https://doi.org/10.1007/s11018-020-01764-6.

    Article  Google Scholar 

  27. B. P. Kibble, Metrologia, 35, No. 1, 17 (1998), https://doi.org/https://doi.org/10.1088/0026-1394/35/1/3.

    Article  ADS  Google Scholar 

  28. L. Callegaro, Meas. Sci. Technol., 20, No. 2, Article ID 022002 (2009), https://doi.org/10.1088/0957-0233/20/2/022002.

  29. S. A. Awan and B.P. Kibble, IEEE Trans. Instrum. Meas., 54, No. 2, 516–520 (2005), https://doi.org/https://doi.org/10.1109/TIM.2005.843582.

    Article  ADS  Google Scholar 

  30. T. Ö zkan, G. Gulmez, E. Turhan, and Ya. Gulmez, Meas. Sci. Technol., 18, No. 11, 3496–3500 (2007), https://doi.org/10.1088/0957-0233/18/11/033.

  31. D. Woods, Proc. IEE — Part C: Monographs, 104, No. 6, 538–541 (1957), https://doi.org/10.1049/pi-c.1957.0062.

  32. A. L. Grokhol'skii, Meas. Tech., 3, No. 6, 518–523 (1960), https://doi.org/https://doi.org/10.1007/BF00976494.

    Article  Google Scholar 

  33. G. N. Ciklauri, “Ehffektivnye parametry koaksial’nykh kon- densatorov v shirokom diapazone chastot,” Proc. 2nd. Republ. Sci.-Tech. Conf. on Metrology, Tbilisi, November 27–29, Tbil. filial VNIIM im. D. I. Mendeleeva (1972).

  34. B. O. Weinschel, “Air-filled coaxial lines as absolute impedance standards,” Microw. J., 7, No. 4, 47–50 (1964).

    Google Scholar 

  35. Je. A. Abrosimov et al., "Vysokochastotnyj raschetnyj kondensator postoyannoj emkosti," Proc. All-Union Sci.-Tech. Conf. on Radiotechnical Measurements, Novosibirsk, Siberian Scientific Research Institute of Metrology, 1, 11 (1970).

  36. G. N. Tsiklauri, "Пpoпycк" Sovremennye metody i apparatura dlja izmerenija parametrov radiocepej, Coll. Reports All-Union Symp., Novosibirsk, September 18–22, 1973, Novosibirsk, Siberian Scientific Research Institute of Metrology (1974).

  37. B. E. Rabinovich, "Metodika summirovaniya chastnykh pogreshnostej v oblasti radiotekhnicheskikh izmerenij," Vopr. Radioelektro. Ser. Radioizmer. Tekh., 4, 3–22 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Zagaynov.

Additional information

Translated from Izmeritel'naya Tekhnika, No. 8, pp. 9–16, August 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilov, A.M., Zagaynov, S.D., Mandrueva, A.E. et al. Get 107-2019 Special State Primary Standard of the Unit of Electrical Capacitance in the Frequency Range from 1 to 300 MHz. Meas Tech 65, 549–556 (2022). https://doi.org/10.1007/s11018-023-02119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02119-7

Keywords

Navigation