Skip to main content
Log in

Phase Triangulation Method with Statistical Filtering for Measurements at Random Additive Interference with a Limited Dynamic Range of a Photodetector

  • LINEAR AND ANGULAR MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

The article presents the application of optical methods for measuring the parameters of three-dimensional objects. It also discusses strategies for decoding phase images in the presence of additive interference and a limited dynamic range of a photodetector. The existing methods for decoding phase images introduce nonlinear distortions and systematic error into the measurement results under such conditions. A phase triangulation method with statistical data filtering is proposed for measuring the three-dimensional profile of an object under random additive interference with a limited dynamic range of a photodetector, which avoids systematic distortions of the measurement results. The method is based on adaptive filtering and statistical analysis of the intensity distribution in the recorded phase images. The error of the method of decoding phase images was analyzed analytically using statistical data filtering and threshold filtering. The proposed method can decode data in systems for measuring three-dimensional geometry that implements the phase triangulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. S. Gorthi and P. Rastogi, Opt. Lasers Eng., 48, No. 2, 133–140 (2010), https://doi.org/https://doi.org/10.1016/j.optlaseng.2009.09.001.

  2. N. D’Apuzzo, Proc. SPIE, 6056 (2006), https://doi.org/https://doi.org/10.1117/12.650123.

  3. S. Zhang, Opt. Lasers Eng, 48, No. 2, 149–158 (2010), https://doi.org/10.1016J.0PTLASENG.2009.03.008.

    Article  ADS  Google Scholar 

  4. M. Gruber and G. Hausler, “Simple, robust and accurate phase-measuring triangulation,” Optik, 3, 118–122 (1992).

    Google Scholar 

  5. L. Chen, C. Liang, X. Nguyen, et al., Meas. Sci. Technol., 21, No. 10 (2010), https://doi.org/https://doi.org/10.1088/0957-0233/21/10/105309.

  6. S. V. Dvoynishnikov, D. V. Kulikov, and V. G. Meledin, Measur. Techn., 53, No. 6, 648–656 (2010), https://doi.org/https://doi.org/10.1007/S11018-010-9556-0.

  7. S. V. Dvoynishnikov, Y. A. Anikin, I. K. Kabardin, et al., Measur. Techn., 59, No. 1, 21–27 (2016), https://doi.org/https://doi.org/10.1007/S11018-016-0910-8.

  8. S. V. Dvoynishnikov, V. G. Meledin, V. G. Glavnyi, et al., Measur. Techn., 58, No. 5, 506–511 (2015), https://doi.org/https://doi.org/10.1007/S11018-015-0745-8.

  9. S. V. Dvoynishnikov, V. V. Rakhmanov, I. K. Kabardin, and V. G. Meledin, Measurement, 145, 63–70 (2019), https://doi.org/https://doi.org/10.1016/j.measurement.2019.05.054.

  10. S. Lv, M. Jiang, C. Su, et al., Sensors, 21 (2021), https://doi.org/https://doi.org/10.3390/s21134463.

  11. P. Wankhede, S. Kodey, S. Kurra, and S. Radhika, Measurement, 187 (2022), https://doi.org/https://doi.org/10.1016/j.measurement.2021.110273.

  12. A. Rudyk, A. Semenov, N. Kryvinska, and O. Semenova, Measurement, 187 (2022), http://doi.org/https://doi.org/10.1016/j.measurement.2021.110271.

  13. Y. Jiang, S. Wang, H. Qin, et al., Measurement, 186 (2021), https://doi.org/https://doi.org/10.1088/1361-6501%2Fac1b41.

  14. Y. Dong, Z. Li, L. Zhu, and X. Zhang, Measurement, 186 (2021), https://doi.org/https://doi.org/10.1016/j.measurement.2021.110199.

  15. F. Guo, B. Yang, W. Zheng, and S. Liu, Measurement, 186 (2021), https://doi.org/https://doi.org/10.1016/j.measurement.2021.110165.

  16. J. Fan, Y. Feng, J. Mo, et al., Measurement, 185 (2021), http://doi.org/https://doi.org/10.1016/j.measurement.2021.110029.

  17. H. Wang, J. Ma, H. Yang, et al., Measurement, 185 (2021), https://doi.org/https://doi.org/10.1016/j.measurement.2021.110003.

  18. B. Shi, Z. Ma, X. Ni, et al., Measurement, 185 (2021), https://doi.org/https://doi.org/10.1016/j.measurement.2021.109938.

  19. Y. Zhang, N. Fan, Y. Wu, et al., Measurement, 171 (2021), https://doi.org/https://doi.org/10.1016/j.measurement.2020.108762.

  20. T. Luhmann, ISPRS J. Photogramm. Remote Sens., 65, No. 6, 558–569 (2010), https://doi.org/10.1016J.ISPRSJPRS.2010.06.003.

  21. B. Li, Y. An, D. Capelleri, et al., Int. J. Intel. Robot. Appl, 1, No. 1, 86–103 (2017), https://doi.org/https://doi.org/10.1007/s41315-016-0001-7.

  22. S. Matthias, M. Kästner, and E. Reithmeier, Measurement, 73, 239–246 (2015), https://doi.org/https://doi.org/10.1016/j.measurement.2015.05.024.

  23. C. Chu, H. Yang, and L. Wang, Measurement, 145, 410–418 (2019), https://doi.org/https://doi.org/10.1016/j.measurement.2019.02.058.

  24. T. Koutecký, D. Paloušek, and J. Brandeis, Measurement, 94, 60–70 (2016), https://doi.org/https://doi.org/10.1016/j.measurement.2016.07.067.

  25. X. Cao, W. Xie, S. M. Ahmed, and C. R. Li, Measurement, 159 (2020), https://doi.org/https://doi.org/10.1016/j.measurement.2020.107771.

  26. S. V. Dvojnishnikov and V. G. Meledin, RF Patent No. 2433372, Byull. Izobret. Polezn. Modeli, No. 31 (2011).

  27. S. V. Dvojnishnikov, V. G. Meledin, RF Patent No. 2439489, Byull. Izobret. Polezn. Modeli, No. 1 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dvoynishnikov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 6, pp. 36–40, June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvoynishnikov, S.V., Meledin, V.G., Kabardin, I.K. et al. Phase Triangulation Method with Statistical Filtering for Measurements at Random Additive Interference with a Limited Dynamic Range of a Photodetector. Meas Tech 65, 426–431 (2022). https://doi.org/10.1007/s11018-022-02100-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-022-02100-w

Keywords

Navigation