Skip to main content
Log in

Nondestructive Testing Methods for Studying the Diffusion Coefficient in thin Porous Materials: Comparison of Metrological Characteristics

  • THERMOPHYSICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

Issues associated with the lack of promptness and accuracy of nondestructive testing (NDT) methods for determining the diffusion coefficient in thin porous materials are studied. Since the calibration of diffusant concentration transducers in a porous material takes a long time, the productivity of research on the diffusion coefficient is low when using conventional methods. The authors examine two methods enabling determination of the diffusion coefficient without the actual static characteristic of the used diffusant concentration transducer. The first method relies on recording the time point that corresponds to the maximum concentration of the diffusant following pulse application. When determining the target coefficient via the second method, it is possible to select two identical values of the transducer output characteristic following the pulse application with the recording of corresponding time points. The specified methods are compared. The errors in determining the target coefficient are studied under comparable conditions using both methods. The paper also analyzes the possibility of reducing the resulting error of Method II by selecting quantities included in the calculation expression. The study results can be useful in the production and use of items made of porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. E. N. Kablov, “New-generation materials and technologies for their digital processing,” Vestn. Ross. Akad. Nauk, 90, No. 4, 331–334 (2020). https://doi.org/10.31857/S0869587320040052

  2. A. P. Garshin, V. I. Kulik, S. A. Matveev, and A. S. Nilov, Contemporary technology for preparing fiber-reinforced composite materials with a ceramic refractory matrix,” Nov. Ogneup., No. 4, 20–35 (2017). https://doi.org/10.17073/1683-4518-2017-4-20-35

  3. T. V. Gladysheva, N. F. Gladyshev, and S. I. Dvoretskii, “Preparation and properties of a lime chemisorbent with fluoropolymer dispersion,” Zh. Prikl. Khim., 89, No. 7, 955–958 (2016).

    Google Scholar 

  4. J. M. P. Q. Delgado, N. M. M. Ramos, and V. P. de Freitas, J. Build. Phys., 35, No. 3, 251–266 (2012). https://doi.org/10.1177/1744259111418331

    Article  Google Scholar 

  5. M. Hallaji, A. Seppänen, and M. Pour-Ghaz, Cement Concrete Res., 69, 10–18 (2015). https://doi.org/10.1016/j.cemconres.2014.11.007

    Article  Google Scholar 

  6. M. I. Nizovtsev, S. V. Stankus, A. N. Sterlyagov, V. I. Terekhov, and R. A. Khairulin, Int. J. Heat Mass Tran., 51, No. 17, 4161-4167 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.013

    Article  Google Scholar 

  7. A. S. Mujumdar and E. Tsotsas (eds.), Modern Drying Technology. Vol. 2. Experimental Techniques, Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim (2009).

  8. F. Hibbe, J. Caro, C. Chmelik, A. Huang, T. Kirchner, D. Ruthven, R. Valiullin, and J. Kärger, J. Am. Chem. Soc., 134, No. 18, 7725–7732 (2012). https://doi.org/10.1021/ja211492b

    Article  Google Scholar 

  9. T. V. Kotereva, V. B. Ikonnikov, E. M. Gavrishchuk, A. M. Potapov, and D. V. Savin, “IR spectroscopy for precision monitoring of iron and chromium impurity diffusion profiles in zinc chalcogenides,” Zh. Tekhn. Fiziki, 88, No. 7, 1110–1115 (2018). https://doi.org/10.21883/JTF.2018.07.46189.2572

  10. Z. M. Selivanova, D. S. Kurenkov, L. G. Varepo, and O. V. Trapeznikova, J Phys. Conf. Ser., 1791, 012110 (2021). https://doi.org/10.1088/1742-6596/1791/1/012110

  11. E. S. Platunov, I. V. Baranov, S. E. Buravoi, and V. V. Kurepin, Thermophysical Measurements [in Russian], ed. by E. S. Platunov, SPbGUNiPT, St. Petersburg (2010).

  12. S. V. Mishchenko, P. S. Belyaev, V. A. Gladkikh, and E. N. Safronova, Dry. Technol., 17, No. 10, 2151–2167 (1999). https://doi.org/10.1080/07373939908917677

    Article  Google Scholar 

  13. S. N. Mochalin, I. N. Isaeva, and S. V. Ponomarev, “Selection of the optimal conditions for measuring moisture transfer characteristics in thin capillary-porous materials using the ‘instantaneous’ moisture source,” Vestn. Tambov. Gos. Tekhn. Univ., 16, No. 3, 533–545 (2010).

    Google Scholar 

  14. S. N. Mochalin and S. V. Ponomarev, Measurement of Moisture Transfer Characteristics in Thin Capillary-Porous Materials Using the ‘Instantaneous’ Moisture Source Method [in Russian], Izd-vo Spektr, Moscow (2010).

  15. V. P. Belyaev, S. V. Mishchenko, and P. S. Belyaev, “Selection of optimal parameters for measuring the solvent diffusion coefficient during the nondestructive testing of products made from capillary-porous materials,” Izmer. Tekh., No. 5, 68–71 (2015).

  16. V. P. Belyaev, S. V. Mishchenko, and P. S. Belyaev, “Study of the diffusion coefficient in thin articles made of porous materials,” Zh. Tekhn. Fiziki, 89, No. 10, 1630–1634 (2019). https://doi.org/10.21883/JTF.2019.10.48184.420-18

  17. V. P. Belyaev, L. G. Varepo, P. S. Belyaev, O. A. Belousov, and A. P. Pudovkin, AIP Conf. Proc., 2141, No. 1, 050017 (2019). https://doi.org/10.1063/1.5122160

    Article  Google Scholar 

  18. S. V. Ponomarev, S. V. Mishchenko, A. G. Divin, V. A. Vertogradskii, and A. A. Churikov, Theoretical and Practical Basis behind Thermophysical Measurements [in Russian], ed. by S. V. Ponomarev, Fizmatlit, Moscow (2008).

  19. V. P. Belyaev, M. P. Belyaev, S. V. Mishchenko, and P. S. Belyaev, “Design of a measuring instrument for determining the diffusion coefficient of solvents in products made from thin capillary-porous materials,” Izmer. Tekh., No. 10, 65–69 (2013).

  20. A. G. Shashkov, G. M. Volokhov, T. N. Abramenko, and V. P. Kozlov, Methods for Determining Thermal Conductivity and Thermal Diffusivity [in Russian], Energiya, Moscow (1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Belyaev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 5, pp. 69–75, May 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, V.P., Belyaev, M.P., Mishchenko, S.V. et al. Nondestructive Testing Methods for Studying the Diffusion Coefficient in thin Porous Materials: Comparison of Metrological Characteristics. Meas Tech 65, 382–389 (2022). https://doi.org/10.1007/s11018-022-02092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-022-02092-7

Keywords

Navigation