Skip to main content
Log in

Influence of the Surface Curvature of Silicon Reference Materials on their Structural Characteristics

  • LINEAR AND ANGULAR MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

This article discusses the aspects of four-circle diffractometers that are used to identify the composition of substances and materials and to determine many mechanical, physicochemical, and biological functionally significant characteristics of substances at the arbitration level. When monitoring the operation and certification of diffractometers, a system of reference materials of diffraction properties, including the reference materials of the crystal lattice parameter, is used. Taking into account the new quantum reality of modern technologies, the characteristics of these reference samples (RSs) have been refined. According to the precision measurement results of the unit cell size of RSs of silicon’s diffraction properties, a change in its structural characteristics with a change in the sphere diameter of the samples was revealed. This size effect, detected for the first time in the millimeter range, is similar to the effect when changing the size of silicon nanoparticles and other substances with different types of chemical bonding of atoms. Hence, the size effect must be taken into account when certifying RSs used in testing four-circle diffractometers. The results are important for understanding the nanoconditions of matter and will be useful in various industries, such as robot engineering, solar energy, focusing laser beams, and developing navigation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wong-Ng et al., J. Res. Natl. Inst. Stand. Technol., 106, No. 6, 1071 (2001). https://doi.org/10.6028/jres.106.058

    Article  Google Scholar 

  2. B. N. Kodess, “Metrological assurance of high-accuracy measurements of key materials characteristics for modern technology and their certified reference materials of composition and properties,” Hist. Sci. Eng., No. 9, 29–36 (2010).

    Google Scholar 

  3. B. Kodess, et al., Meeting Report, Neutron News, 20, No. 3, 4 (2009). https://doi.org/10.1080/10448630903114026.

  4. C. R. Hubbard, J. Appl. Crystallogr., 16, No. 3, 285–288 (1983). https://doi.org/10.1107/S0021889883010456

    Article  Google Scholar 

  5. D. Yoder-Short, J. Appl. Crystallogr., 26, No. 2, 272–276 (1993). https://doi.org/10.1107/S0021889892011610

    Article  Google Scholar 

  6. B. N. Kodess, O. P. Lazukina, E. N. Volkova et al., Inorg. Mater., 56, 512–517 (2020). https://doi.org/10.1134/S0020168520050076.

    Article  Google Scholar 

  7. B. N. Kodess, F. A. Sidorenko, Phys. Met. Metallogr., 122, No. 4, 345–350 (2021). https://doi.org/10.1134/S0031918X21040037.

    Article  Google Scholar 

  8. Y. S. Belozerov, et al., Inorg. Mater., 57, 1135–1139 (2021). https://doi.org/10.1134/S0020168521110029

    Article  Google Scholar 

  9. I. D. Morokhov, V. I. Petinov, L. I. Trusov, and V. F. Petrunin, Sov. Phys. Usp., 24, No. 4, 295–317 (1981). https://doi.org/10.1070/PM1981v024n04ABEH004800.

    Article  ADS  Google Scholar 

  10. V. I. Zubov, “Some nano-size effects and properties of ultradispersive systems,” Zhur. Vsesoyuz. Himich. Obsh. im. D. I. Mendeleeva, 36, 133–136 (1991).

    Google Scholar 

  11. M. A. Filippov, B. N. Kodess, “Influence of high-pressure shock waves on the fine structure of manganese steel,” Phys. Met. Metallogr., 31, No. 1, 171–175 (1971).

    Google Scholar 

  12. B. Kodess, P. Kodess, “Investigation of nanostructure materials for developing new x-ray reference materials,” Proceedings of the Denver X-ray Conference, ICDD, 59, 243–254 (2015).

    MATH  Google Scholar 

  13. P. Aleksyeyev et al., Acta Phys. Pol. A, 4, No. 109, 555–559 (2006). 10.12693/APhysPolA.109.55.

  14. A. Nabialek, et al., J. Appl. Phys., 105(6), 063918 (2009). https://doi.org/10.1063/13093696.

    Article  ADS  Google Scholar 

  15. M. Y. Gamarnik, Phys. Status Solidi B, 161, 2, 457–462 (1990). https://doi.org/10.1002/pssb.2221610202.

    Article  ADS  Google Scholar 

  16. B. N. Kodess, A. Y. Kuzin, Ind. Lab.: Diagn. Mater., 83 (12), 61–70 (2017). 10.26896/1028-6861-2017-83-12-61-70.

  17. B. N. Kodess, V. A. Sarin, Meas. Tech., 57, No. 11, 1299–1303 (2015). https://doi.org/10.1007/s11018-015-0624-3.

    Article  Google Scholar 

  18. B. N. Kodess, et al., “Metrological assurance of the quality control of pharmaceutical production using XRD methods,” Proceeding the 8th Pharmaceutical X-ray Diffraction Symposium, 4–7 May, Glasgow, Scotland, UK, 9–10 (2009).

  19. M. T. Medetbekov et al., “Phase transitions, elastic constants and electron distribution in KDP-family,” Acta Сrystallogr. A: Found Crystallogr., 55, 61 (1999).

    Google Scholar 

  20. B. Kodess, P. Kodess, Mater. Res. Proc., 21, 259–263 (2022). 10.21741/978164 4 901755-46.

  21. A. N. Tyumentsev et al., Phys. Mesomech., 16, No. 4, 319–334 (2013). https://doi.org/10.1134/S1029959913040061.

    Article  Google Scholar 

  22. V. E. Panin et al., Phys. Mesomech., 18, No. 2, 89–99 (2015). https://doi.org/10.1134/S1029959915020010.

    Article  Google Scholar 

  23. V. Vitelli, J. B. Lucks, and D. R. Nelson, Proceedings of the National Academy of Sciences, 103, No. 33, 12323–12328 (2006). https://doi.org/10.1073/pnas.0602755103.

    Article  ADS  MathSciNet  Google Scholar 

  24. M. V. Sukhanov et al., Doklady Chem., 466, No. 1, 11–14 (2016). https://doi.org/10.1134/S0012500816010079.

    Article  Google Scholar 

  25. K. E. Petersen, Proceedings of the IEEE, 70, No. 5, 420–457 (1982). https://doi.org/10.1109/PROC.1982.12331.

    Article  ADS  Google Scholar 

  26. V. A. Pogorelov, S. V. Sokolov, Cosm. Res., 53, No. 6, 458–468 (2015). https://doi.org/10.1134/S0010952515060040.

    Article  Google Scholar 

  27. V. S. Shebashaevich et al., Setev. Sputnik. Radionavig. Sistemy, Radio i svyaz', Moscow (1993).

  28. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett., 91, No. 23, 233117 (2007). https://doi.org/10.1063/12821113.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Kodess.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 5, pp. 35-41, May, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodess, B.N. Influence of the Surface Curvature of Silicon Reference Materials on their Structural Characteristics. Meas Tech 65, 346–351 (2022). https://doi.org/10.1007/s11018-022-02086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-022-02086-5

Keywords

Navigation