Skip to main content
Log in

Microgravity Test Complex for Mobile and Portable Optical Frequency Standards

  • TIME AND FREQUENCY MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

Herein, the application of optical quantum standards (quantum sensors) based on cold atoms in satellite navigation is discussed. The advantages of placing quantum sensors based on cold atoms in space are also discussed. It has been established that to improve the accuracy of measurements using quantum sensors, their operation in zero-gravity or microgravity on specific platforms must be studied. The main platforms that provide microgravity conditions are reviewed in this article, and a test platform for falling along a parabolic trajectory in the form of a slide of various shapes with a moving trolley is proposed. Four different slide configurations have been described in detail, with a computer simulation for each of them. A comparative analysis of the characteristics of the slides has been performed, their advantages and disadvantages have been identified, and the most effective configuration has been found. Furthermore, a method for improving microgravity quality is proposed, and it will be considered in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. B. J. Bloom, T. L. Nicholson, J. R. Williams, et al., Nature, 506, No. 71 (2014), https://doi.org/10.1038/Nature12941.

  2. T. L. Nicholson et al., Nat. Commun., 6, 6896 (2015), https://doi.org/10.1038/ncomms7896.

    Article  ADS  Google Scholar 

  3. I. Ushijima, M. Takamoto, M. Das, et al., Nat. Photonics, 9, 185–189 (2015), https://doi.org/10.1038/nphoton.2015.5.

    Article  ADS  Google Scholar 

  4. J. Xie et al., Satellite Navigation Systems and Technologies, Springer, Singapore (2021).

    Book  Google Scholar 

  5. L. Liu et al., Nat. Commun., 9, 2760 (2018), https://doi.org/10.1038/s41467-018-05219-z.

    Article  ADS  Google Scholar 

  6. S. Schiller et al., “Precision test of General Relativity and the Equivalence Principle using ultrastable optical clocks: a mission proposal,” Proc. 39th ESLAB Symp. Trends in Space Science and Cosmic Vision 2020, F. Favata et al. (eds.), ESA SP-588 (2005), pp. 39–42.

  7. A. D. Ludlow, M. M. Boyd, J. Ye, et al., https://arxiv.org/abs:1407.3493v2[physics.atomph], pp. 62–64 (2015).

  8. S. Schiller et al., Nucl. Phys. B – Proc. Suppl., 166, 300–302 (2007), https://doi.org/10.1016/j.nuclphysbps.2006.12.032.

    Article  ADS  Google Scholar 

  9. B. D. Tapley et al., Science, 305, No. 5683, 503–505 (2004), https://doi.org/10.1126/science.1099192.

    Article  ADS  Google Scholar 

  10. G. S. Belotelov, D. V. Sutyrin, and S.N. Slyusarev, “Towards a transportable optical frequency standard on neutral ytterbium atoms,” Rocket-Space Dev. Eng. Inf. Sys., 6, No. 1, 24–31 (2019), https://doi.org/10.30894/issn2409-0239.2019.6.1.24.31.

    Article  Google Scholar 

  11. P. G. Westergaard, J. Lodewyck, M. L. Lisete, and A. Lecallier, Phys. Rev. Lett., 106, No. 21, 210801 (2011), https://doi.org/10.1103/PhysRevLett.106.210801.

    Article  ADS  Google Scholar 

  12. S. Falke et al. (2013), https://arxiv.org/abs/1312.3419v1[physics.atom-ph].

  13. N. Yu, J. Kohel, J. Kellogg, et al., Appl. Phys. B, 84, No. 4, 647–652 (2006), https://doi.org/10.1007/s00340-006-2376-x.

    Article  ADS  Google Scholar 

  14. P. Asenbaum et al., Phys. Rev. Lett., 125, No. 19, 191101 (2020), https://doi.org/10.1103/PhysRevLett.125.191101.

    Article  ADS  Google Scholar 

  15. M. R. Drinkwater, R. Floberghagen, R. Haagmans, et al., Space Sci. Rev., 108, No. 1–2, 419–432 (2003), https://doi.org/10.1007/978-94-017-1333-7_36.

    Article  ADS  Google Scholar 

  16. J. A. Johannessen, G. Balmino, C. Le Provost, et al., Surv. Geophys., 24, 339–386 (2003), https://doi.org/10.1023/B:GEOP.0000004264.04667.5e.

    Article  ADS  Google Scholar 

  17. C. Reigber, H. Jochmann, J. Wunsch, et al., Earth Observation with CHAMP (2005), pp. 25–30, https://doi.org/10.1007/3-540-26800-6_4.

  18. J. M. Brockmann, N. Zehentner, E. Hock, et al., Geophys. Res. Lett., 41, No. 22, 8089–8099 (2014), https://doi.org/10.1002/2014GL061904.

    Article  ADS  Google Scholar 

  19. D. N. Aguilera, H. Ahlers, A. Battelier, et al., Clas. Quant. Grav., 31, No. 11, 115010 (2014), https://doi.org/10.1088/0264-9381/31/11/115010.

    Article  ADS  Google Scholar 

  20. B. Altschul, Q. G. Bailey, L. Blanchet, et al., Adv. Space Res., 55, No. 1, 501–524 (2015), https://doi.org/10.1016/j.asr.2014.07.014.

    Article  ADS  Google Scholar 

  21. S. W. Chiow, J. Williams, N. Yu, and H. Muller, Phys. Rev. A, 95, No. 2, 021603 (2017), https://doi.org/10.1103/PhysRevA.95.021603.

    Article  ADS  Google Scholar 

  22. J. Williams, S. W. Chiow, N. Yu, and H. Muller, New J. Phys, 18, No. 2, 025018 (2016), https://doi.org/10.1088/1367-2630/18/2/025018.

    Article  ADS  Google Scholar 

  23. J. I. Malcolm, Doctoral Dissertation of Philosophy, University of Birmingham, Birmingham (2016).

    Google Scholar 

  24. K. Bongs, V. Boyer, M. A. Cruise, et. al., Proc. SPIE 9900, Quantum Optics, SPIE Photonics Europe, Brussels, Belgium, 990009 (2016), https://doi.org/10.1117/12.2232143.

  25. E. R. Elliott et al., Microgravity, 4, No. 1, 1–7 (2018), https://doi.org/10.1038/s41526-018-0049-9.

    Article  MathSciNet  Google Scholar 

  26. M. Warner et al., “On the design of BECCAL-a quantum optics experiment aboard the ISS,” Proc. 69th Int. Astronautical Congress, Bremen, Germany, Oct. 1–5, 2018, IAF, 2018, IAC-18, A2, IP, 7, x46028, https://iafastro.directory/iac/archive/browse/IAC-18/A2/IP/46028/, acc. Feb. 3, 2022.

  27. S. Schiller et al., Let’s Embrace Space (2012), Vol. 2, Chpt. 45, p. 452, https://doi.org/10.2769/31208.

  28. S. Schiller et al., ELIPS-3 The Space Optical Clocks (SOC) Project Final Report, 2012, www.exphy.uni-duesseldorf.de/PDF/Space%20Optical%20Clocks%20Final%20Report%20v11%20version%20for%20double-sided%20printing%20v3.pdf, acc. Feb. 25, 2022.

  29. L. Cacciapuoti and C. Salomon, Eur. Phys. J. Spec. Top., 172, No. 1, 57–68 (2009), https://doi.org/10.1140/EPJST/E2009-01041-7.

    Article  Google Scholar 

  30. B. Battelier, B. Barrett, L. Fouche, et. al., Proc. SPIE 9900, Quantum Optics, SPIE Photonics Europe, Brussels, Belgium, 990004 (2016), https://doi.org/10.1117/12.2228351.

  31. P. Cheiney, L. Fouche, S. Templier, et al., Phys. Rev. Appl., 10, No. 3, 034030 (2018), https://doi.org/10.1103/PhysRevApplied.10.034030.

  32. F. Sorrentino et al., J. Phys.: Conf. Ser., 327, No. 1 (2011), https://doi.org/10.1088/1742-6596/327/1Z012050.

  33. R. A. Nyman et al, Appl. Phys. B, 84, No. 4, 673–681 (2006), https://doi.org/10.1007/s00340-006-2395-7.

    Article  ADS  Google Scholar 

  34. J. Grosse et al., AIAA SPACE 2014 Conference and Exposition, San Diego, CA, Aug. 4–7, 2014, AIAA, 4210 (2014), https://doi.org/10.2514/6.2014-4210.

  35. A. Stamminger et al., “MAIUS-1 – vehicle, subsystems design and mission operations,” Proc. 22nd ESA Symp. on European Rocket and Balloon Programs and Related Research, Tromsø, Norway, June 7–12, 2015, ESA Communications (2015), pp. 183–191.

  36. M. Elsen et al., “Design of the MAIUS-2/3 atom interferometer on a sounding rocket,” Proc. 67th Int. Astronautical Congress (IAC 2016), Guadalajara, Mexico, Sept. 26–30, 2016, IAF, IAC-16.A2.3.2 (2016), pp. 464–471.

  37. M. Elsen et al., “Final design of the MAIUS-2/3 payload – an atom interferometer on a sounding rocket,” Proc. 69th Int. Astronautical Congress (IAC 2018), Bremen, Germany, Oct. 1–5, 2018, IAF, IAC-18.A2.3.5 (2018), pp. 1026–1031.

  38. A. Dinkelaker et al., Frontiers in Optics 2016, Rochester, New York, Oct. 17–21, 2016, OSA Technical Digest (2016), FF1H.1, https://doi.org/10.1364/FIO.2016.FF1H.1.

  39. H. Muntinga et al., “QUANTUS: applications of Bose–Einstein condensates in microgravity,” 38th COSPAR Sci. Assembly, Bremen, Germany, July 18–25, 2010, H04-0015-10 (2010), p. 2.

  40. J. Rudolph et al., Micrograv. Sci. Tech., 23, No. 3, 287–292 (2011), https://doi.org/10.1007/S12217-010-9247-0.

    Article  ADS  Google Scholar 

  41. S. Herrmann, D. Hansjorg, and L. Claus, Class Quantum Grav., 29, No. 18, 184003 (2012), https://doi.org/10.1088/0264-9381/29/18/184003.

    Article  ADS  Google Scholar 

  42. M. Scharringhausen, T. Quantus, and M.R. Ernst, “Bose–Einstein condensation in extended microgravity,” 39th COSPAR Sci. Assembly, Mysore, India, July 14–22, 2012, H0.6 (2012), p. 1710.

  43. H. Dittus, Endeavor, 15, No. 2, 72–78 (1991), https://doi.org/101016/S0160-9327(05)80008-0.

  44. Zero Gravity Research Facility User’s Guide (2017), https://www1.grc.nasa.gov/wp-content/uploads/Zero-Gravity-Research-Facility-users-guide.pdf, acc. Feb. 3, 2022.

  45. 2.2 Second Drop Tower, NASA Glenn Research Center (2008), https://www1.grc.nasa.gov/facilities/drop/, acc. Feb. 3, 2022.

  46. V. G. Degtyar, “70th anniversary of the state rocket center named after academician V. R. Makeyev,” Space Eng. Tech., No. 2 (21) (2018), https://www.energia.ru/ktt/archive/2018/02-2018/02-01.pdf, acc. Feb. 10, 2022.

  47. C. Lotz et al., Logist. J.: Proc., No. 12 (2020), https://doi.org/10.2195/lj_Proc_lotz_en_202012_01.

  48. G. Condon et al., Phys. Rev. Lett., 123, No. (24), 240402 (2019), https://doi.org/10.1103/PhysRevLett.123.240402.

    Article  ADS  Google Scholar 

  49. A. Nevsky et al., Opt. Lett., 38, No. 22, 4903–4906 (2013), https://doi.org/10.1364/OL.38.004903.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Vyalykh.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 3, pp. 45–52, March, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyalykh, A.P., Semenko, A.V., Sutyrin, D.V. et al. Microgravity Test Complex for Mobile and Portable Optical Frequency Standards. Meas Tech 65, 197–205 (2022). https://doi.org/10.1007/s11018-022-02069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-022-02069-6

Keywords

Navigation