Skip to main content
Log in

Measurement of the Intensity of a High-Frequency Electric Field: Application of a Ring Waveguide with Two Slots Filled with Electro-Optic Polymer

  • Published:
Measurement Techniques Aims and scope

The problem of enhancing the sensitivity of a measurement transducer of high-frequency external electric fields is examined. It is shown that solving this problem is possible by using a ring waveguide with two horizontal or vertical slots filled with an electro-optic polymer. The structure of a measurement transducer of a ring waveguide with two horizontal or vertical slots is examined. In waveguides with two slots, a greater intensity of optical radiation in the region of the slots is achieved, in comparison with waveguides with one slot. The values of the optimal distances between the slots and their width for maximum sensitivity of the measurement transducer are determined. As a result of using the active organic compound SEO125 and waveguides with two slots, the transducer under study makes it possible to measure the strength of alternating electric fields of frequency 0–10 GHz over the range 150–16·106 V/m with resolution up to 150 V/m. The measurement transducer can be used to detect high frequency waves and electromagnetic pulses, as well as to analyze external electromagnetic interference and diagnose high frequency electronic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. M. Bieler, G. Hein, K. Pierz, et al., Appl. Phys. Lett., 87, No. 4, 042102–042104 (2005), https://doi.org/10.1063/1.2000333.

    Article  ADS  Google Scholar 

  2. H. Chunyang, L. Fangxing, S. Chen, and D. Hui, Opt. Lett., 40, No. 16, 3683–3686 (2015), https://doi.org/10.1364/OL.40.003683.

    Article  Google Scholar 

  3. T. Pfeifer, H.-M. Heiliger, T. Lofľler, et al., IEEE J. Sel. Top. Quant. Electr., 2, No. 3, 586–604 (1996), https://doi.org/10.1109/2944.571758.

    Article  ADS  Google Scholar 

  4. O. Bottauscio, M. Chiampi, G. Crotti, et al., IEEE T. Instrum. Measur., 62, No. 1, 1436–1442 (2013), https://doi.org/10.1109/TIM.2012.2230812.

    Article  Google Scholar 

  5. V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, Prog. Quant. Electron., 30, No. 2–3, 45–73 (2006), https://doi.org/10.1016/j.pquantelec.2006.08.001.

    Article  ADS  Google Scholar 

  6. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, IEEE Photon. Tech. Lett., 14, No. 11, 1602–1604 (2002), https://doi.org/10.1109/LPT.2002.803916.

    Article  ADS  Google Scholar 

  7. Zh. Yong, Zh. Ya-nan, L. Ri-qing, and L. Jin, J. Lightwave Technol., 35, No. 16, 3440–3446 (2017), https://doi.org/10.1109/JLT.2016.2576500.

    Article  ADS  Google Scholar 

  8. A. M. Musab, A. Al-Tarawni, A. B. Ashrif, et al., Opt. Eng., 56, No. 10, 107105 (2017), https://doi.org/10.1117/1.OE.56.10.107105.

    Article  ADS  Google Scholar 

  9. X. Zhang, A. Hosseini, H. Subbaraman, et al., J. Lightwave Technol., 32, No. 20, 3774–3784 (2014), https://doi.org/10.1109/JLT.2014.2319152.

    Article  ADS  Google Scholar 

  10. J. Zhang, F. Chen, and B. Sun, IEEE Photon. Tech. Lett., 26, No. 3, 275–277 (2014), https://doi.org/10.1109/LPT.2013.2292567.

    Article  ADS  Google Scholar 

  11. D. H. Park, V. R. Pagan, T. E. Murphy, et al., Opt. Express, 23, No. 7, 9464–9476 (2015), https://doi.org/10.1364/OE.23.009464.

    Article  ADS  Google Scholar 

  12. K. Tajima, R. Kobayashi, N. Kuwabara, and M. Tokuda, “Development of optical isotropic e-field sensor operating more than 10 GHz using Mach–Zehnder interferometers,” IEICE T. Electron., E85C, No. 4, 961–968 (2002).

    Google Scholar 

  13. L. Chen and R. M. Reano, Opt. Express, 20, No. 4, 4032–4038 (2012), https://doi.org/10.1364/OE.20.004032.

    Article  ADS  Google Scholar 

  14. I. A. Goncharenko and V. N. Ryabtsev, “Measurement of the strength of electric fields by means of ring resonators based on slot waveguides with liquid crystal filling,” Izmer. Tekhn., No. 1, 41–45 (2018), https://doi.org/10.32446/0368-1025it.2018-1-41-45.

  15. I. A. Goncharenko, V. N. Ryabtsev, A. V. Il’yushonok, and O. D. Navrotsky, “A sensor of the strength of high frequency electric fields based on slot waveguides filled with an electro-optic polymer,” Vestn. Univ. Grazhd. Zash. MChS Belar., 4, No. 4, 378–388 (2020), https://doi.org/10.33408/2519-237X.2020.4-4.378.

    Article  Google Scholar 

  16. F. Seng, Z. Yang, R. King, et al., Appl. Optics, 56, No. 17, 4911–4916 (2017), https://doi.org/10.1364/AO.56.004911.

    Article  ADS  Google Scholar 

  17. I. A. Goncharenko, A. K. Esman, V. K. Kuleshov, and V. A. Pilipovich, Opt. Commun., 257, No. 1, 54–61 (2006), https://doi.org/10.1016/j.optcom.2005.07.024.

    Article  ADS  Google Scholar 

  18. C. Y. Lin, A. X. Wang, B. S. Lee, et al., Opt. Express, 19, No. 18, 17372–17377 (2011), https://doi.org/10.1364/OE.19.017372.

    Article  ADS  Google Scholar 

  19. R. Pregla, J. Lightwave Technol., 14, No. 4, 634–639 (1996), https://doi.org/10.1109/50.491403.

    Article  ADS  Google Scholar 

  20. I. A. Goncharenko, S. E. Helfert, and R. Pregla, Int. J. Electron. Commun. (AEÜ), 59, No. 3, 185–191 (2005), https://doi.org/10.1016/j.aeue.2004.11.012.

    Article  Google Scholar 

  21. I. A. Goncharenko, A. V. Il’yushonok, and V. N. Ryabtsev, “A sensor of the strength of high frequency electric fields based on optical waveguides with several slots,” Proc. 13th Int. Sci. Techn. Conf. Instrumentation Technologies-2020, Minsk, Belarus, Nov. 18–20, 2020, BNTU, Minsk (2020), pp. 28–30.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Goncharenko.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 12, pp. 56–61, December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharenko, I.A., Reabtsev, V.N. Measurement of the Intensity of a High-Frequency Electric Field: Application of a Ring Waveguide with Two Slots Filled with Electro-Optic Polymer. Meas Tech 64, 1024–1029 (2022). https://doi.org/10.1007/s11018-022-02039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-022-02039-y

Keywords

Navigation