S. Solmaz, M. Akar, R. Shorten, and J. Kalkkuhl, “Real-time multiple-model estimation of centre of gravity position in automotive vehicles,” Vehicle Syst. Dyn., 46, No. 9, 763–788 (2008), https://doi.org/10.1080/00423110701602670.
Article
Google Scholar
V. Kuz’mina, “Automatic weight and size control system: problems and solutions,” Avtomob. Transp., No. 10, 10–28 (2018).
A. M. Pashaev, A. R. Gasanov, I. A. Isgandarov, and E. A. Agaev, Patent-Invention i2016 0003, “Method for non-contact determination of the degree of loading level and centering of aircraft,” Promysh. Sobstv. Ofi ts. Byull. Komit. Standartiz. Metrol. Patent. Azerbaijan. Respubl., No. 5, 51 (2016), http://patent.copat.gov.az/_fi les/Ixtira_2016_05.pdf, acc. 11.28.2021.
A. M. Pashaev, A. R. Gasanov, R. N. Nabiev, and I. A. Isgandarov, “Structural model of the non-contact system for aircraft weight and center of gravity determination,” Izv. YuFU, Tekhn. Nauki, 156–167 (2018), https://doi.org/10.23683/2311-3103-2018-3-156-167.
A. A. Bogoyavlenskii, “Implementation of mass and centering monitoring to the process of aircraft technical operation,” Mir Izmer., No. 8, 9–16 (2012).
Google Scholar
V. A. Zagorskii, D. Yu. Kiselev, and V. I. Sanchutov, Testing of Aerial Vehicles: Electronic Textbook, Izd. SGAU, Samara (2014), http://repo.ssau.ru/handle/Uchebnye-posobiya/Ispytaniya-vozdushnyh-sudov-Elektronnyi-resurselektron-ucheb-posobie-po-programmam-vysshobrazovaniya-po-napravleniu-podgot-bakalavrov-162300-Tehnekspluataciya-letat-apparatov-i-aviac-dvigatelei-55205, acc. 11.28.2021.
P. I. Pakhomov and T. Yu. Kaplina, “Cargo weight control using an automatic weight measuring device,” Gorn. Inform.-Analit. Byull., No. 11, 289–292 (2006).
Google Scholar
Y. M. Al-Rawashdeh, M. Elshafei, and M. F. Al-Maliki, “In-flight estimation of center of gravity position using all-accelerometers,” Sensors, 14, No. 9, 17567–17585 (2014), https://doi.org/10.3390/s140917567.
ADS
Article
Google Scholar
A. V. Solntseva, S. A. Borminskii, D. I. Blinov, and E. A. Silov, “Method for measuring the mass of liquid cargo in tank farms when solving the problems of transportation and distribution of energy carriers,” Neftegaz. Delo: Elektron. Zh., No. 5, 314–324 (2013), http://ogbus.ru/files/ogbus/authors/SolntcevaAV/SolntcevaAV_1.pdf, acc. 11.28.2021.
M. M. Mordasov, A. P. Savenkov, M. E. Safonova, and V. A. Sychev, “Non-contact surface tension measurement method,” Izmer. Tekhn., No. 6, 55–60 (2018), 10.32446/0368-1025it-2018-6-55-60.
M. D. Skubilin, “Method for measuring the mass (weight) of moving objects,” Tekhnol. Konstr. Elektron. Apparat, No. 2, 31–32 (2003), http://dspace.nbuv.gov.ua/handle/123456789/70608, acc. 11.28.2021.
A. M. Pashayev, A. R. Hasanov, I. A. Isgenderov, et al., “Imaging method application peculiarities in contactless determination of aircraft loading limitations,” Asian J. Comp. Inform. Syst., 2, No. 1 (2014), https://www.ajouronline.com/index.php/AJCIS/article/view/1044, acc. 11.28.2021.
A. A. Reutov, V. I. Averchenkov, M. Yu. Rytov, and V. P. Fedorov, “Simulation of conveyor speed relay control systems,” Vestn. MGTU Baumana, No. 2, 76–90 (2019), 10.18698/0236-3933-2019-2-76-90.
V. V. Petrov and K. N. Shkavera, “Investigation of the accuracy of measuring distances with a LEICA DISTO PRO laser tape measure,” Zap. Gorn. Instit., 156, 232–234 (2004).
Google Scholar
D. A. Loktev, Methods and Simulation of the Measuring System for Monitoring Transport Objects by Their Images: Doctor of Science Thesis, MIIT, Moscow (2020).
Google Scholar