Skip to main content

Coolant Flow Rate Measurement Technique for Nuclear Power Reactor Control Systems

The problem of ensuring an error of no more than 1% in monitoring the coolant flow rate in the piping of the first loop of the reactor in nuclear power plants is examined. A method for measuring the coolant flow rate based on recording the γ-radiation during the variation of the oxygen activity of the coolant is proposed. A measurement device is created for recording bursts of γ-radiation which contain probes based on fiber optics and ways of placing it on the piping are described. To implement the proposed method, an optical flowmeter has been developed for monitoring the coolant flow in laminar and turbulent flow regimes at different temperatures. An optimum doping for the core of the fiber optic with germanium oxide is established for measurements of the coolant flow rate for different intensities of the oxygen activity. A method is proposed for recovery of the transmission of the optical fiber in measurements of the coolant flow rate in the presence of γ-radiation. A technique for measuring the coolant flow rate is examined in detail and features of its implementation are noted. Results from a study of the optical flowmeter on a test stand are presented.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. P. N. Alekseev, A. Y. Gagarinskii, M. A. Kalugin, et al., Atomic Energy, 126, No. 4, 207–212 (2019), https://doi.org/10.1007/s10512-019-00538-w.

    Article  Google Scholar 

  2. D. A. Klinov, A. V. Gulevich, V. S. Kagramanyan, et al., Atomic Energy, 125, No. 3, 143–148 (2019), https://doi.org/10.1007/s10512-018-00457-2.

    Article  Google Scholar 

  3. V. F. Davydov, N. S. Myazin, and V. V. Kiryukhin, Atomic Energy, 127, No. 5, 274–279 (2020), https://doi.org/10.1007/s10512-020-00623-5.

    Article  Google Scholar 

  4. V. V. Shpeizman, V. I. Nikolaev. O. A. Pozdnyakov, et al., Techn. Phys., 65, No. 1, 73–77 (2020), https://doi.org/10.1134/S1063784220070191.

    ADS  Article  Google Scholar 

  5. A. Bobyl, V. Malyshkin, V. Dolzhenko, et al., IOP Conf. Ser. Earth Envir. Sci., 390, No. 1, 012047 (2019), https://doi.org/10.1088/1755-1315/390/1/012047.

    Article  Google Scholar 

  6. I. D. Velt and Yu. V. Mikhailova, Measur. Techn., 56, No. 3 83–288 (2013), https://doi.org/10.1007/s11018-013-0196-z.

    Article  Google Scholar 

  7. R. Looney and J. Priede, Flow Measur. Instr., 65, 128–135 (2019), https://doi.org/10.1016/j.flowmeasinst.2018.11.019.

    Article  Google Scholar 

  8. I. D. Vel’t, E. A. D’yakonova, Y. V. Mikhailova, and N. V. Terekhina, Atomic Energy, 122, No. 4, 243–251 (2017), https://doi.org/10.1007/s10512-017-0262-8.

    Article  Google Scholar 

  9. A. V. Semenikhin, Y. V. Saunin, and S. I. Ryasnyi, Atomic Energy, 124, No. 1, 8–13 (2018), https://doi.org/10.1007/s10512-018-0367-8.

    Article  Google Scholar 

  10. A. P. Sorokin and Y. A. Kuzina, Atomic Energy, 128, No. 5, 277–286 (2020), https://doi.org/10.1007/s10512-020-00688-2.

    Article  Google Scholar 

  11. V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, Measur. Techn., 57, No. 8, 912–918 (2014), https://doi.org/10.1007/s11018-014-0559-0.

    Article  Google Scholar 

  12. J. Firth, F. Ladouceur, Z. Brodzeli, et al., Flow Measur. Instr., 48, 15–19 (2016), https://doi.org/10.1016/j.flowmeasinst.2016.01.006.

    Article  Google Scholar 

  13. L. T. Abramov, A. V. Baklanov, A. M. Bakmetiev, and V. V. Kiselev, Atomic Energy, 129, No. 2, 103–108 (2020), https://doi.org/10.1007/s10512-020-00611-2.

    Article  Google Scholar 

  14. M. Ya. Marusina, B. A. Bazarov, P. A. Galaidin, et al., Measur. Techn., 57, No. 4, 461–465 (2014), https://doi.org/10.1007/s11018-014-0478-0.

    Article  Google Scholar 

  15. P. F. Kashaykin, A. L. Tomashuk, M. Y. Salgansky, et al., J. Appl. Phys., 121, No. 21, 213104 (2017), https://doi.org/10.1063/1.4984601.

    ADS  Article  Google Scholar 

  16. P. F. Kashaykin, A. L. Tomashuk, S. A. Vasiliev, et al., IEEE T. Nucl. Sci., 67, No. 10, 2162–2171 (2020), https://doi.org/10.1109/TNS.2020.3019404.

    ADS  Article  Google Scholar 

  17. D. S. Dmitrieva, V. M. Pilipova, V. I. Dudkin, et al., J. Phys. Conf. Ser., 1697, No. 1, 012145 (2020), https://doi.org/10.1088/1742-6596/1697/1/012145.

    Article  Google Scholar 

  18. D. S. Dmitrieva, V. M. Pilipova, V. V. Davydov, and I. R. Valiullin, J. Phys. Conf. Ser., 1695, No. 1, 012130 (2020), https://doi.org/10.1088/1742-6596/1695/1/012130.

    Article  Google Scholar 

  19. P. E. Filimonov, Yu. M. Semchenkov, V. V. Malyshev, and I. N. Gusev, Atomic Energy, 129, No. 3, 143–148 (2020), https://doi.org/10.1007/s10512-020-00672-2.

    Article  Google Scholar 

  20. I. A. Arkharov and I. D. Kakorin, Measur. Techn., 63, No. 7, 549–558 (2020), https://doi.org/10.1007/s11018-020-01822-z.

    Article  Google Scholar 

  21. V. V. Davydov, Measur. Techn., 59, No. 11, 1202–1209 (2016), https://doi.org/10.1007/s11018-017-1116-4.

    Article  Google Scholar 

  22. G. G. Akhobadze, Measur. Techn., 63, No. 5, 361–367 (2020), https://doi.org/10.1007/s11018-020-01796-y.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. V. Davydov or V. V. Davydov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 11, pp. 30–37, November, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davydov, R.V., Gureeva, I.M. & Davydov, V.V. Coolant Flow Rate Measurement Technique for Nuclear Power Reactor Control Systems. Meas Tech 64, 895–902 (2022). https://doi.org/10.1007/s11018-022-02020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-022-02020-9

Keywords

  • optical flowmeter
  • coolant
  • control system
  • nuclear reactor
  • oxygen activity
  • γ-radiation
  • laser radiation
  • optical fiber
  • flow rate
  • measurement error