Skip to main content
Log in

Realization of a New Definition of Kelvin on State Primary Standard of Temperature Unit Get 35-2021 in the Temperature Range from 0.3 To 273.16 K

  • Published:
Measurement Techniques Aims and scope

The article describes the composition and metrological characteristics of the State Primary Standard of temperature unit – kelvin – in the range from 0.3 K to 273.16 K GET 35-2021. GET 35-2021 allows reproducing and disseminating the temperature unit in accordance with the definition of kelvin, accepted at the 26th General Conference on Weights and Measures (26th CGPM) in 2018. GET 35-2021 includes three installations of acoustic gas thermometry developed in 2012–2019, which are the primary means of measuring temperature in the ranges of 79–273.16 K, 4.2–80K, 268.16–273.16 K. Equipment for reproducing the reference points of the International Temperature Scale ITS-90 has been upgraded in order to improve the accuracy. Based on the studies performed, the uncertainty of reproducing the thermodynamic temperature and temperature according to ITS-90 has been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P. P. M. Steur and M. Durieux, “Constant-volume gas thermometry between 4 K and 100 K,” Metrologia, 23, No. 1, 1–18 (1986).

    Article  ADS  Google Scholar 

  2. J. F. Schooley, “NBS/NIST gas thermometry from 0 to 660°C,” J. Res. Natl. Inst. Stan., 95, No. 3, 255–290 (1990).

    Article  Google Scholar 

  3. H. Preston-Thomas and C. G. M. Kirby, “Gas thermometer determinations of the thermodynamic temperature scale in the range –183°C to 100°C,” Metrologia, 4, No. 1, 30–40 (1968).

    Article  ADS  Google Scholar 

  4. D. N. Astrov, L. B. Beliansky, Y. A. Dedikov, et al., “Precision gas thermometry between 2.5 K and 308 K,” Metrologia, 26, No. 3, 151–166 (1989).

    Article  ADS  Google Scholar 

  5. R. Rusby, D. Head, C. Meyer, et al., “Final Report on CCT-K1: Realizations of the ITS-90, 0.65 K to 24.5561 K, using rhodium–iron resistance thermometers,” Metrologia, 43, No. 1A, 03002 (2006).

    Article  ADS  Google Scholar 

  6. G. Benedetto, R. M. Gavioso, R. Spagnolo, et al., “Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 380 K,” Metrologia, 41, No. 1, 74–98 (2004).

    Article  ADS  Google Scholar 

  7. L. Pitre, M. R. Moldover, and W. L. Tew, “Acoustic thermometry: new results from 273 K to 77 K and progress towards 4 K,” Metrologia, 43, No. 1, 142–162 (2006).

    Article  ADS  Google Scholar 

  8. M. R. Moldover, R. M. Gavioso, J. B. Mehl, et al., “Acoustic gas thermometry,” Metrologia, 51, No. 1, R1 (2014).

    Article  Google Scholar 

  9. L. Pitre, L. Risegari, F. Sparasci, et al., “Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water,” Metrologia, 52, No. 5, S263–S273 (2015).

    Article  Google Scholar 

  10. R. M. Gavioso, D. M. Ripa, P. P. M. Steur, et al., “A determination of the molar gas constant R by acoustic thermometry in helium,” Metrologia, 52, No. 5, S274–S304 (2015).

    Article  Google Scholar 

  11. M. de Podesta, R. Underwood, G. Sutton, et al., “A low-uncertainty measurement of the Boltzmann constant,” Metrologia, 50, No. 4, 354–376 (2013).

    Article  ADS  Google Scholar 

  12. R. M. Gavioso, D. M. Ripa, P. P. M. Steur, et al., “Determination of the thermodynamic temperature between 236 K and 430 K from speed of sound measurements in helium,” Metrologia, 56, No. 4, 045006 (2019).

    Article  ADS  Google Scholar 

  13. V. G. Kytin, G. A. Kytin, M. Yu. Ghavalyan, et al., “Deviation of temperature determined by ITS-90 temperature scale from thermodynamic temperature measured by acoustic gas thermometry at 79.0000 K and at 83.8058 K,” Int. J. Thermophys., 41, No. 6, 88 (2020).

    Article  ADS  Google Scholar 

  14. S. M. Osadchii, B. G. Potapov, and K. D. Pilipenko, “Acoustic gas thermometer for the implementation of a new definition of kelvin based on the fundamental physical Boltzmann constant,” Alman. Sovr. Metrol., No. 12, 15–39 (2017).

  15. S. M. Osadchii, B. G. Potapov, K. D. Pilipenko, et al., “Measurement of the Boltzmann constant in a quasispherical acoustic resonator,” Izmer. Tekhn., No. 7, 8–13 (2017).

  16. V. G. Kytin, M. Yu. Ghavalyan, B. G. Potapov, et al., “Relative acoustic gas thermometry installation for low temperature range from 4.2 to 80 K,” Izmer. Tekhn., No. 1, 45–52 (2020).

  17. S. M. Osadchii, B. G. Potapov, A. A. Petukhov, et al., “Realization of the triple point of oxygen for capsule-type thermometers,” Alman. Sovr. Metrol., No. 1 (21), 136–147 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kytin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 8, pp. 8–15, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kytin, V.G., Ghavalyan, M.Y., Petukhov, A.A. et al. Realization of a New Definition of Kelvin on State Primary Standard of Temperature Unit Get 35-2021 in the Temperature Range from 0.3 To 273.16 K. Meas Tech 64, 613–621 (2021). https://doi.org/10.1007/s11018-021-01980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-021-01980-8

Keywords

Navigation