Skip to main content
Log in

An Invariant Method of Measuring the Flow Rate of Wet Gas

  • MECHANICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

One of the principal problems of modern flow metering, the measurement of flow rate and quantity of wet gas, is considered. This problem is especially critical under production conditions when information about the quantity of the dry component of the gas present in the form of a mixture in a flow of moist gas, is needed. The operating principle and structure of the invariant system used in the measurement of the flow rate of moist gas (except for gases with an abundance of droplet moisture) are presented. The functioning of the invariant system used to measure the flow rate of wet gas is based on the combined application of differential pressure-drop flowmeters and Coriolis flowmeters as well as simultaneous application of the principle of multichanneling and the method of partial flow metering. The results of a test of the proposed invariant system are presented and its metrological characteristics exhibited in measurement of the flowrate of wet gas are estimated. The test results obtained are critical for natural gas extraction, transportation, and storage facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Economides, M. and Wood, D. A., J. Nat. Gas Sci. Eng., 1, 1–13 (2009), https://doi.org/10.1016/j.jngse.2009.03.005.

    Article  Google Scholar 

  2. Yorucu, V. and Bahramian, P., J. Nat. Gas Sci. Eng., 24, 464–472 (2015), https://doi.org/10.1016/J.JNGSE.2015.04.006.

    Article  Google Scholar 

  3. Reader-Harris, M., Orifice Plates and Venturi Tubes, Springer International Publishing, Switzerland (2015), https://doi.org/10.1007/978-3-319-16880-7.

  4. Xu, Y., Yuan, C., Long, Z., et al., Flow Measur. Instr., 34, 68–75 (2013), https://doi.org/10.1016/j.flowmeasinst.2013.07.014.

    Article  Google Scholar 

  5. Xu, L., Xu, J., Dong, F., and Zhang, T., Flow Measur. Instr., 34, 68–75 (2013), https://doi.org/10.1016/S0955-5986(03)00027-X.

    Article  Google Scholar 

  6. Hua, C. and Geng, Y., Measurement, 45, 763–768 (2012), https://doi.org/10.1016/j.measurement.2011.12.013.

    Article  ADS  Google Scholar 

  7. Li, J., Wang, J., and Geng, Y., Flow Measur. Instr., 20, 168–173 (2009), https://doi.org/10.1016/j.flowmeasinst.2009.04.002.

    Article  Google Scholar 

  8. Steven, R., Flow Measur. Instr., 12, 361–372 (2002), https://doi.org/10.1016/S0955-5986(02)00003-1.

    Article  Google Scholar 

  9. Steven, R. and Hall, A., Flow Measur. Instr., 20, 141–151 (2009), https://doi.org/10.1016/j.flowmeasinst.2009.07.001.

    Article  Google Scholar 

  10. Lupeau, A., Platet, B., Gajan, P., et al., Flow Measur. Instr., 18, 1–11 (2007), https://doi.org/10.1016/j.flowmeasinst.2006.09.002.

    Article  Google Scholar 

  11. He, D, and Bai, B., Measurement, 58, 61–67 (2014), https://doi.org/10.1016/j.measurement.2014.08.014.

    Article  ADS  Google Scholar 

  12. He, D, and Bai, B., Flow Measur. Instr., 28, 1–6 (2007), https://doi.org/10.1016/j.flowmeasinst.2012.07.008.

    Article  Google Scholar 

  13. Graham, E. M., Reader-Harris, M., Chinello, G., et al., Flow Measur. Instr.,74, 101757 (2020), https://doi.org/10.1016/j.flowmeasinst.2020.101757.

    Article  Google Scholar 

  14. Pan, Y., Hong, Y., Sun, Q., et al., Flow Measur. Instr., 70, 101636 (2019), https://doi.org/10.1016/j.flowmeasinst.2019.101636.

    Article  Google Scholar 

  15. Xu, L., Zhou, W., Li, X., and Tang, S., IEEE Trans. Instr. Measur., 60, 947–956 (2011), https://doi.org/10.1109/TIM.2010.2045934.

    Article  Google Scholar 

  16. Dayev, Zh. and Yuluyev, V. T., Flow Measur. Instr., 70, 101636 (2019), https://doi.org/10.1016/j.flowmeasinst.2019.101653.

    Article  Google Scholar 

  17. Petrov, B. N., Viktorov, V. A., Lunkin, B. V., et al., Principle of Invariance in Measurement Science, Nauka, Moscow (1976).

  18. Bromberg, E. M. and Kulikovskii, K. L., Test Methods of Increased Degree of Measurement Precision, Energiya, Moscow (1978).

  19. Dayev, Zh. A. and Latyshev, L. N., Flow Measur. Instr., 56, 18–22 (2017), https://doi.org/10.1016/j.flowmeasinst.2017.07.001.

    Article  Google Scholar 

  20. Dayev, Zh. A. and Kayrakbaev, A. K., “Features of the measurement of the flow rate of liquid and gases by differential pressure-drop flowmeters,” Izmer. Tekhn., No. 11, 26–29 (2016).

  21. Dayev, Zh. A., Flow Measur. Instr., 71, 101674 (2020), https://doi.org/10.1016/j.flowmeasinst.2019.101674.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zh. A. Dayev or G. E. Shopanova.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 6, pp. 13−19, June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayev, Z.A., Shopanova, G.E. & Toksanbaeva, B.A. An Invariant Method of Measuring the Flow Rate of Wet Gas. Meas Tech 64, 445–452 (2021). https://doi.org/10.1007/s11018-021-01953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-021-01953-x

Keywords

Navigation