Skip to main content
Log in

Fiber-Optic Measurement Technology and the Phase-Chronometric Method for Controlling and Monitoring the Technical Condition of Aircraft Structures

  • CONFERENCE MATERIALS
  • Published:
Measurement Techniques Aims and scope

The assurance of safe aircraft operation is considered in terms of the fatigue life of its structure. The article demonstrates the relevance of developing and implementing diagnostic systems to monitor the structural condition of complex technical objects on the example of a helicopter. The authors present an original approach to developing and implementing complex systems for diagnostics and monitoring the condition of complex technical objects. This novel approach combines a fiber-optic measurement technology and a phase-chronometric method. The application of monitoring and diagnostic systems is shown to ensure a transition to an operational technical condition. The proposed approach facilitates an increase in maintenance intervals and a reduction in the excess safety margins of structures, leading to more reliable aircraft performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. N. A. Makhutov, M. M. Gadenin, D. O. Reznikov, and D. A Neganov, “Analysis of stress-strain and limit states in highly loaded areas of machines and structures,” Chebyshev. Sborn., 18, No. 3, 63 (2017).

  2. N. A. Makhutov, “Comprehensive system for the calculation and experimental determination of conditions and parameters of limit states,” Zavod. Lab. Diagn. Mater., 83, No. 1(1), 52–56 (2017).

  3. V. E. Strizhius, Methods for Calculating the Fatigue Life of Aircraft Structural Elements: Handbook, Mashinostroenie, Moscow (2012).

    Google Scholar 

  4. A. V. Nikitin, V. V. Soldatkin, and V. M. Soldatkin, Russ. Aeronaut., 59, No. 4, 587–594 (2016).

    Article  Google Scholar 

  5. V. V. Pakhov, K. V. Fayzullin, and S. L. Denisov, Acoust. Phys., 66, No. 1, 44–54 (2020), https://doi.org/10.1134/S1063771020010078.

    Article  ADS  Google Scholar 

  6. V. M. Soldatkin, V. V. Soldatkin, and A. V. Nikitin, Russ. Aeronaut., 63, 164–170 (2020).

    Article  Google Scholar 

  7. V. V. Soldatkin, Russ. Aeronaut., 52, No. 4, 455–462 (2009).

    Article  Google Scholar 

  8. E. O. Ariskin, A. V. Nikitin, V. V. Soldatkin, and V. M. Soldatkin, Russ. Aeronaut., 58, No. 4, 454–460 (2015).

    Article  Google Scholar 

  9. A. V. Nikitin and V. V. Soldatkin, Russ. Aeronaut., 55, No. 1, 68–75 (2012).

    Article  Google Scholar 

  10. O. I. Kuznetsov and V. M. Soldatkin, Russ. Aeronaut., 60, No. 2, 263–269 (2017).

    Article  Google Scholar 

  11. A. Mironov, P. Doronkin, and A. Priklonsky, in: Int. Conf. on Reliability and Statistics in Transportation and Communication, Oct, 2017, Springer, Cham (2017), pp. 137–149.

  12. D. V. Nedel’ko, Russ. Aeronaut., 59, No. 3, 297–302 (2016).

    Article  Google Scholar 

  13. E. D. Pozdnyakova, S. S. Khabarov, and A. S. Komshin, “Use of measurement technologies for optimizing the functioning and diagnostics of aircraft structural elements employing fiber-optic systems,” Budush. Mashinostr. Rossii, 160–162 (2019).

  14. E. D. Metelkina, “Condition diagnostics system for the angle gearbox,” Pribory, No. 11, 14–20 (2016).

    Google Scholar 

  15. N. L. Lvov, S. S. Khabarov, and M. Y. Gavrikov, IJET, 7, No. 4.38, 1162–1166 (2018), https://doi.org/10.14419/ijet.v7i4.38.27755.

  16. S. S. Khabarov, A. V. Faustov, A. L. Buzhilov, and N. L. Lvov, IJATCSE, 8, No. 5, 2586–2590 (2019).

    Google Scholar 

  17. A. G. Dmitrienko, A. V. Blinov, and V. N. Novikov, “ Distributed intelligent system for monitoring the condition of rocket and space equipment,” Izmer. Tekhn., No. 3, 13–15 (2011).

    Google Scholar 

  18. M. I. Kiselev, V. I. Pronyakin, and Ya. V. Chivilev, “Recording and analysis of the turbine shutdown parameters of a turbine generator set using a phase-chronometric method,” Izmer. Tekhn., No. 8, 24–27 (2005).

  19. A. S. Komshin and S. R. Orlova, “In-service control of structural material degradation on the example of string elements,” Izmer. Tekhn., No 6, 26–29 (2016).

  20. V. A. Mekheda, Strain Gauge Method: Textbook, Izd. Samar. Gos. Aerokosm. Univ., Samara (2011).

    Google Scholar 

  21. V. B. Garmash et al., “Fiber-optic measurement systems in modern instrument engineering: opportunities, challenges, and prospects,” Foton-Еkspress, No. 6, 128–140 (2005).

    Google Scholar 

  22. B. V. Boitsov et al., “Nondestructive testing methods used for structures from promising composite materials,” Trudy MAI: Set. Zh., No. 49 (2011), https://mai.ru/upload/iblock/3c1/metody-nerazrushayushchego-kontrolya_-primenyaemye-dlya-konstruktsiy-iz-perspektivnykh-kompozitsionnykh-materialov.pdf, acc. Nov. 22, 2020.

  23. A. N. Ser’eznov et al., Acoustic-Emission Control of Aircraft Structures, Mashinostroenie, Moscow (2008).

    Google Scholar 

  24. V. V. Chernova, Development of a Procedure for the Acoustic-Emission Control of Defects in Products from Composite Materials at the Early Stage of their Development: Diss. Cand. Tekhn. Sci., TPU, Tomsk (2017).

  25. I. V. Razuvaev, Utility Model Patent No. RU123531 U1 RF, "Acoustic emission transducer," Dec. 27, 2012, Apl. No. 2012128151/28 as of July 3, 2012.

  26. H. Moradi, F. Hosseinibalam, and S. Hassanzadeh, Laser Phys. Lett., 16, No. 6, 065106 (2019).

    Article  ADS  Google Scholar 

  27. H. Liao, P. Lu, L. Liu, et al., IEEE Photon. J., 9, No. 2, 1–9 (2017), https://doi.org/10.1109/JPHOT.2017.2662944.

    Article  Google Scholar 

  28. N. A. Ushakov and L. B. Liokumovich, J. Lightwave Technol., 33, No. 9, 1683–1690 (2015).

    Article  ADS  Google Scholar 

  29. S. V. Varzhel, Fiber Bragg Gratings, ITMO, St. Petersburg (2015).

    Google Scholar 

  30. I. Prigogine and I. Stengers, Time, Chaos, Quantum: Towards the Resolution of the Paradox of Time [Russian translation], Editorial URSS, Moscow (2003).

    Google Scholar 

  31. G. Goldstein, Classical Mechanics, Nauka, Moscow (1975).

    MATH  Google Scholar 

  32. G. L. Kotkin and V. G. Serbo, Collection of Classical Mechanics Problems, Nauka, Moscow (1969).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Khabarov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 2, pp. 49–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabarov, S.S., Komshin, A.S. Fiber-Optic Measurement Technology and the Phase-Chronometric Method for Controlling and Monitoring the Technical Condition of Aircraft Structures. Meas Tech 64, 131–138 (2021). https://doi.org/10.1007/s11018-021-01907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-021-01907-3

Keywords

Navigation