Skip to main content
Log in

Measurement of the Strength and Microstructural Characteristics of Epoxy Polymers Cured by Thermal and Microwave Methods

  • PHYSICOCHEMICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

Epoxy polymer samples cured by thermal and microwave methods under different temperature-time conditions are studied. The physical and mechanical parameters of the epoxy polymer samples, as well as their microstructure and fractographic fracture patterns, are studied. A tensile test method is used is used to determine the dependence of their strength parameters on the curing regime. Optimal regimes are identified for both curing methods, which makes it possible to obtain samples with maximum strength. Electron microscopy is used for comparative fractographic analysis of the fracture surfaces of samples with similar strength characteristics with thermal and microwave curing. It is found that microwave curing yields an increased globule size and more nanopores, as well as more pronounced local plastic deformation during fracture, and a larger spread in the ratio of the propagation velocities of main and secondary cracks. The dependence of the optical density of the test samples on the thermal and microwave curing regimes is established for wavelengths of 360–2500 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. H. Lee and K. Nevill, Handbook of Epoxy Resins [Russian translation], Energiya, Moscow (1973).

    Google Scholar 

  2. M. L. Kerber, V. M. Vinogradov, G. S. Golovkin, et al., Polymer Composite Materials: Structure, Properties, Technology: Textbook, Professiya, St. Petersburg (2008), pp. 42–47.

    Google Scholar 

  3. S. L. Bazhenov, Mechanics and Technology of Composite Materials, Intellekt, Dolgoprudnyi (2014), p. 84.

    Google Scholar 

  4. K. Johnston, S. K. Pavuluri, M. T. Leonard, et al., Thermochim. Acta, 616, Sept., 100–109 (2015), https://doi.org/10.1016/j.tca.2015.08.010.

    Article  Google Scholar 

  5. V. Tanrattanakul and K. Sae Tiaw, J. Appl. Polymer Sci., 97, No. 4, 1442–1461 (2005), https://doi.org/10.1002/app.215786.

    Article  Google Scholar 

  6. S. G. Kalganova, Electrical Technology of Nonthermal Modifications of Polymer Materials in Microwave Electric Fields: Abstr. Doct. Dissert. Techn. Sci., Saratov (2009).

  7. M. Boyle, C. Martin, and J. Neuner, Epoxy Resins. ASM Handbook (2001), Vol. 21, pp 78–89.

    Google Scholar 

  8. G. V. Malysheva, Trudy VIAM, No. 8(68), 23–27 (2018).

  9. V. N. Nefedov, T-Comm: Telekommun. Transp., 11, No. 6, 33–37 (2017).

    Google Scholar 

  10. A. E. Ushakov, D. K. Polyakov, T. G. Sorina, et al., Patent No. 2189997 RF, Izobret. Polezn. Modeli, No. 27 (2002).

  11. I. S. Deev, E. N. Kablov, L. P. Kobec, et al., Trudy VIAM, No. 7 (2014), 10.18577/2307-6046-2014-0-7-6-6, http://viam-works.ru, acc. 11.11.2020.

  12. Y. C. Lin and X. Chen, Mater. Lett., 59, No. 29–30, 3831–3836 (2005), https://doi.org/10.1016/j.matlet.2005.06.061.

    Article  Google Scholar 

  13. I. S. Deev and L. P. Kobec, Vysokomol. Soed., Ser. A, 38, No. 4, 627–633 (1996).

  14. V. A. Lavrent’ev and S. G. Kalganova, Electrical and Thermal Technology Processes and Apparatus: Coll. Sci. Works, SGTU, Saratov (2005), Vol. 2, pp. 67–70.

  15. S. G. Kalganova, Vest. SGTU, 1, No. 1(10), 90–95 (2006).

  16. Yu. K. Dmitriev, R. R. Daminev, E. M. Abakacheva, and A. A. Islamutdinova, Bashkir. Khim. Zh., 19, No. 1, 203–206 (2012).

    Google Scholar 

  17. A. I. Gulyaev, N. O. Yakovlev, V. D. Krylov, and O. A. Lashov, Aviats. Mater. Tekhnol., No. 3 (48), 65–73 (2017).

  18. E. K. Gamstedt and B. A. Sjogren, Compos. Sci. Technol., 59, 167–178 (1999), https://doi.org/10.1016/S0266-3538(98)00061-X.

    Article  Google Scholar 

  19. P. Nygard and C. G. Gustafson, Composites: Part A, 34, No. 10, 995–1006 (2003), https://doi.org/10.1016/S1359-835X(03)00124-6.

    Article  Google Scholar 

  20. D. Purslow, Composites, 17, No. 4, 289–303 (1986), https://doi.org/10.1016/0010-4361(86)90746-9.

  21. M. G. González, J. C. Cabanelas, and J. Baselga, Infrared Spectroscopy – Materials Science, Engineering and Technology (2012), Vol. 2, pp. 261–284, https://doi.org/10.5772/36323.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Matveev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 12, pp. 35–41, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveev, E.V., Mamontov, A.V., Gajdar, A.I. et al. Measurement of the Strength and Microstructural Characteristics of Epoxy Polymers Cured by Thermal and Microwave Methods. Meas Tech 63, 986–992 (2021). https://doi.org/10.1007/s11018-021-01882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-021-01882-9

Keywords

Navigation