Skip to main content
Log in

Nonlinear Parameter Estimation by the Point-Mass Method Taking Into Account Correlation of Particular Estimates

  • GENERAL PROBLEMS OF METROLOGY AND MEASUREMENT TECHNIQUE
  • Published:
Measurement Techniques Aims and scope

A novel solution to the problem of estimating nonlinear parameters is presented. The peculiarity of this problem is that the arguments of a nonlinear function comprise not only the measurement data and required parameters, but also supplementary parameters. Although supplementary parameters are a priori unknown, they are necessary for obtaining optimal estimates of the required parameters, which is carried out according to the point-mass method as a weighted sum of partial estimates obtained for the specified values of supplementary parameters. The considered solution allows priori probabilities for supplementary parameters to be rejected by taking into account additional covariance of weighting coefficients and (or) specified partial estimates. The described approach is effective in solving specified nonlinear estimation problems characterized by low accuracy of available measurement data and (or) their few number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. A. Berkovskii and O. A. Stepanov, “Error in calculating the optimal Bayesian estimate using the Monte Carlo method in nonlinear problems,” Izv. RAN. Teor. Sist. Upravl., 52, No. 3, 3–14 (2013).

    MATH  Google Scholar 

  2. S. P. Dmitriev and O. A. Stepanov, “Non-linear algorithms for the integrated processing of redundant measurements,” Izv. RAN. Teor. Sist. Upravl., No. 4, 52–61 (2000).

  3. O. A. Stepanov, A. V. Motorin, V. A. Vasil’ev, and A. B. Toropov, “Nonlinear filtering in the problems involving the construction of error models for sensors and maps,” in: Proc. 29th Conf. Dedic. to the Memory of an Outstanding Designer of Gyroscopic Instruments N. N. Ostryakov, St. Petersburg, Russia, October 7–9, 2014, Concern TsNII Elektropribor, St. Petersburg (2014), pp. 293–302.

  4. O. A. Stepanov and A. B. Toropov, “Nonlinear filtering for map-aided navigation. Part 1. An overview of algorithms,” Girosk. Navig., 90, No. 3, 102–125 (2015).

  5. O. A. Stepanov, Fundamentals of the Estimation Theory with Applications to the Problems of Processing Navigation Information. Part 1. Introduction to the Estimation Theory, Concern TsNII Elektropribor, St. Petersburg (2010).

  6. A. V. Sholohov, N. I. Kotov, and I. M. Druzhinin, “Estimation of the grid node spacing in the problem of interpolating heights using collocation methods,” Geod. Kartogr., No. 8, 17–20 (2014).

  7. S. B. Berkovich, N. I. Kotov, R. N. Sadekov, et. al., “Estimating the parameters of nonlinear models via the pointmass method using a priori information on node weights,” Izmer. Tekh., No. 4, 35–37 (2017), https://doi.org/https://doi.org/10.32446/0368-1025it.2017-4-35-37.

  8. D. L. Alspach and H. W. Sorenson, “Nonlinear bayesian estimation using gaussian sum approximations,” IEEE Trans. Automat. Contr., AC-17, No. 4, 439–448. (1972).

    Article  Google Scholar 

  9. L. P. Starosel’tsev and O. M. Yashnikova, “Errors in determining parameters characterizing the Earth’s highly anomalous gravity field,” Nauch.-Tekh. Vest. Inf. Tekhnol., Mekh. Opt., 16, No. 3, 533–540 (2016).

    Article  Google Scholar 

  10. V. N. Koneshov, V. N. Solov’ev, V. V. Pogorelov, et al., “Airborne gravity survey for estimating regional errors in gravity anomalies obtained using modern Earth gravitational models,” Geofiz. Issled., 17, No. 3, 5–16 (2016), https://doi.org/https://doi.org/10.21455/gr2016.3-1.

  11. S. K. Jordan, “Self-consistent statistical models for gravity anomaly and undulation of the geoid,” J. Geophys. Res., 77, No. 20, 2156–2202 (1972).

    Article  Google Scholar 

  12. J. S. Meditch, Stochastic Optimal Linear Estimation and Control, McGraw-Hill, New York (1969).

    MATH  Google Scholar 

  13. G. I. Dzhandzhgava and L. I. Avgustov, Geophysical-Field Navigation. Scientific and Methodological Materials, Nauchtekhlitizdat, Moscow (2018).

    Google Scholar 

  14. S. P. Dmitriev, High-Precision Marine Navigation, Sudostroenie, St. Petersburg (1991).

    Google Scholar 

  15. V. G. Peshekhonov, O. A. Stepanov (eds.), L. I. Avgustov, et al., Modern Methods and Instruments for Measuring the Parameters of the Earth’s Gravity Field, Concern TsNII Elektropribor, St. Petersburg (2017).

  16. B. Hofmann-Wellenhof and H. Moritz, Physical Geodesy, Springer (2005).

  17. A. P. Kurdyukov and O. A. Stepanov, “Modern methods of filtration theory,” Avtomat. Telemekh., No. 1, 3–4 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sholokhov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 9, pp. 9–14, September, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sholokhov, A.V., Berkovich, S.B., Kotov, N.I. et al. Nonlinear Parameter Estimation by the Point-Mass Method Taking Into Account Correlation of Particular Estimates. Meas Tech 63, 674–679 (2020). https://doi.org/10.1007/s11018-021-01838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-021-01838-z

Keywords

Navigation