Skip to main content
Log in

Prospects for the Development of a Sensitive Atomic Interferometer Based on Cold Rubidium Atoms

  • GENERAL PROBLEMS OF METROLOGY AND MEASUREMENT TECHNIQUE
  • Published:
Measurement Techniques Aims and scope

An overview of the research results obtained at the All-Russia Research Institute of Physicotechnical and Radio Measurements when creating a fountain type clock is presented. The possibility of using the results obtained for the development of a sensitive atomic interferometer (gravimeter) based on cold rubidium atoms is analyzed. The relevance of the study lies in assessing the prospects for creating an interferometer (gravimeter) based on cold rubidium atoms for absolute measurements of the local value of the gravitational acceleration. The physical principles of operation of an atomic gravimeter are described. A comparison is made between an atomic gravimeter and a fountain-type frequency standard based on cold atoms. The technical solutions required for the creation of an atomic gravimeter with given values of the sensitivity for measuring the acceleration of gravity are proposed. To achieve a gravimeter sensitivity of the order of 1 μGal/Hz1/2, the phase noise of laser radiation, the pressure of residual gases in the vacuum system, and the parameters of the magnetic shield system are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. I. Marson and J. E. Faller, J. Phys. E: Sci. Instrum., 1986, 19, 22–32 (1986), https://doi.org/10.1088/0022-3735/19/1/002.

    Article  ADS  Google Scholar 

  2. P. Novak, Surv. Geophys., 31, 1–21 (2010), https://doi.org/10.1007/s10712-009-9077-z.

    Article  ADS  Google Scholar 

  3. J. Hinderer, N. Florsch, J. Makinen, et al., Geophys. J. Int., 106, 491–497 (1991), https://doi.org/10.1111/j.1365-246X.1991.tb03907.x.

    Article  ADS  Google Scholar 

  4. H. J. Paik, Class. Quant. Grav., 11A, 133–144 (1994), https://doi.org/10.1088/0264-9381/11/6A/010.

    Article  ADS  Google Scholar 

  5. G. Boedecker, Metrologia, 39, 429–433 (2002), https://doi.org/10.1088/0026-1394/39/5/4.

    Article  ADS  Google Scholar 

  6. J. P. Schwarz, D. S. Robertson, T. M. Niebauer, and J. E. Faller, Science, 282, 2230–2234 (1998), https://doi.org/10.1126/science.282.5397.2230.

    Article  ADS  Google Scholar 

  7. J. C. Savage, J. Geophys. Res., 89, 1945–1952 (1984), https://doi.org/10.1029/JB089iB03p01945.

    Article  ADS  Google Scholar 

  8. R. L. Forward, The Moon and the Planets, 22, 419–433 (1980), https://doi.org/10.1007/BF00897287.

    Article  ADS  Google Scholar 

  9. A. Peters, K. Y. Chung, and S. Chu, Metrologia, 38, 25–61 (2001), https://doi.org/10.1088/0026-1394/38/1/4.

    Article  ADS  Google Scholar 

  10. J. Le Gouet, T. Mehlstaubler, J. Kim, et al., Appl. Phys. B, 92, 133–144 (2008), https://doi.org/10.1007/s00340-008-3088-1.

    Article  ADS  Google Scholar 

  11. Yu. S. Domnin, G. A. Elkin, A. V. Novoselov, et al., “Application of cold cesium atoms in quantum frequency standards,” Kvant. Elektr., 34, No. 12, 1084–1095 (2004).

    Article  Google Scholar 

  12. Yu. S. Domnin, V. N. Baryshev, A. I. Boyko, et al., “Cesium frequency reference of the fountain type MCR-F2,” Izmer. Tekhn., No. 10, 26–30 (2012).

  13. Yu. S. Domnin, V. N. Baryshev, A. I. Boyko, et al., “Cesium frequency references of the fountain type MCR-F1 and MCR-F2,” Mir Izmer., 134, No. 4, 30–34 (2012).

    Google Scholar 

  14. M. Kasevich and S. Chu, Phys. Rev. Lett., 67, 181–184 (1991), https://doi.org/10.1103/PhysRevLett.67.181.

    Article  ADS  Google Scholar 

  15. M. Schmidt, A. Senger, M. Hauth, et al., Gyrosc. Navig., 2, 170–177 (2011), https://doi.org/10.1134/S2075108711030102.

    Article  Google Scholar 

  16. L. Zhou, Z. Y. Xiong, W. Yang, et al., Gen. Relat. Gravit., 43, 1931–1942 (2011), https://doi.org/10.1007/s10714-011-1167-9.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Aleynikov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 7, pp. 9–12, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleynikov, M.S., Baryshev, V.N., Blinov, I.Y. et al. Prospects for the Development of a Sensitive Atomic Interferometer Based on Cold Rubidium Atoms. Meas Tech 63, 520–523 (2020). https://doi.org/10.1007/s11018-020-01818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01818-9

Keywords

Navigation