Skip to main content
Log in

Calibration of a Tri-Band Microwave Radiometric System with Background Noise Compensation

  • RADIO MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

It is shown that for microwave radiometric systems for remote sensing of natural environments, the issue of unambiguous determination of the correspondence of the output signal to the value of the radio brightness temperature of the probed region, from which the physical parameters are estimated, is important. Microwave radiometric systems operate under external noise and background noise. This article explores the effect of background noise on the external calibration of a microwave radiometric system using an external “deterministic” noise signal source. The conditions for performing calibration in a system with compensation for the influence of background noise are analyzed. The analysis of the output signal of the microwave radiometric system showed a significant effect of background noise on the parameter that determines the reference origin of the receiver scale. The possibility of reducing the interference effect of background noise on the measurement results in a microwave radiometric system with a two-channel antenna operating on two modes of a circular waveguide is considered. It is shown that an additional compensation signal is formed at the antenna output. An analytical assessment of the degree of compensation of the influence of background noise on the output difference signal of the system is carried out. We perform a numerical analysis of the error of external calibration of a three-band microwave radiometric system with compensation of background noise when receiving thermal radiation to a common aperture of the antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. N. Nekos, V. E. Nekos, and G. G. Shchukin, Remote Sensing Methods for the Study of Natural Objects, RGGMU, St. Petersburg (2009).

    Google Scholar 

  2. R. Ware, R. Carpenter, J. Guldner, et al., Radio Sci., 38, No. 4, 8079–8032 (2003), DOI: https://doi.org/10.1029/2002RS002856.

    Article  ADS  Google Scholar 

  3. D. M. Karavaev and G. G. Shchukin, “Microwave radiometric sounding of the atmospheric–underlying surface system,” in: Questions of Radiometeorology, VKA im. Mozhaiskogo, Izd. Baltiiskaya Pechat', St. Petersburg (2013), pp. 173–192.

  4. T. Rose, S. Crewell, U. Lohnert, and C. Simmer, Atmosph. Res., 75, No. 3, 183–200 (2005), DOI: https://doi.org/10.1016/j.atmosres.2004.12.005.

    Article  ADS  Google Scholar 

  5. A. Battaglia, P. Saavedra, C. Simmer, and R. T. Rain, IEEE Geosci. Remote Sens. Lett., 6, No. 2, 354–358 (2009), DOI: https://doi.org/10.1109/LGRS.2009.2013484.

    Article  ADS  Google Scholar 

  6. Ed. R. Westwater, S. Crewell, and C. Mätzler, Radio Sci., No. 77, 59–80 (2004), DOI: 10.23919/URSIRSB.2004.7909438.

  7. T. J. Hewison, IEEE Geosci. Remote Sens. Lett., No. 45, 2163–2168 (2007), DOI: https://doi.org/10.1109/TGRS.2007.898091.

  8. F. A. Marzano, D. Cimini, P. Ciotti, and R. Ware, IEEE Geosci. Remote Sens. Lett., 43, No. 5, 1000–1011 (2005), DOI: https://doi.org/10.1109/TGRS.2004.839595.

    Article  ADS  Google Scholar 

  9. V. V. Falin, Radiometric Microwave Systems. Luch, Moscow (1997).

    Google Scholar 

  10. Y. Han and Ed. R. Westwater, IEEE Geosci. Remote Sens. Lett., No. 38, 1260–1276 (2000), DOI: https://doi.org/10.1109/36.843018.

  11. G. Mashwitz, U. Lohnert, S. Crewell, et al., Atmosph. Measur. Techn., No. 6, 2641–2658 (2013), DOI: https://doi.org/10.5194/atm-6-2641-2013.

  12. M. P. Cadeddu, J. C. Liljegren, and D. D. Turner, Atmosph. Measur. Techn., No. 6, 2359–2372 (2013), DOI: https://doi.org/10.5194/amt-6-2359-2013.

  13. C. Matzler, Thermal Microwave Radiation: Applications for Remote Sensing, Inst. Eng. Technol., London (2006).

    Book  Google Scholar 

  14. M. Miacci and C. F. Angelis , J. Aerosp. Technol. Manag., 10 (2018), DOI: https://doi.org/10.5028/jatm.v10.927.

  15. V. K. Konnikova, E. E. Leht, and N. A. Silantyev, Practical Radio Astronomy: Textbook, Izd. Mosk. Univ., Moscow (2011).

    Google Scholar 

  16. E. V. Fedoseeva and G. G. Shchukin, Issues of Metrological Support of Radiolocation Measurements under the Influence of External Noise Interference, Izd. Murom Inst. VlGU, Murom (2012).

    Google Scholar 

  17. V. A. Kabanov, “Radiometer for meteorological measurements with accurate calibration by the brightness temperature of the sky,” Radiophyz. Elektron., 7 (21), No. 3, 11–17 (2016).

  18. E. V. Fedoseeva and I. N. Rostokin, “Radiometric system with an additional channel for the formation of a compensation signal,” Trudy GGO, Iss. 562, 243–257 (2010).

  19. E. D. Fedoseyeva, “Estimation of the error of measurements of radio brightness temperature in radio-thermal-location monitoring systems for meteorological parameters with compensation for background noise,” Metrologiya, No. 11, 33–42 (2014).

  20. I. N. Rostokin and E. V. Fedoseyeva, “Construction issues of a multi-frequency radiometric system for remote sensing of the cloud atmosphere with background radiation compensation,” Radiotekhn. Telekomm. Syst., No. 1(17), 12–15 (2015).

  21. I. Rostokin, E. Fedoseeva, E. Rostokina, and G. Shchukin, “Multifrequency microwave radiometric method of detection and control of dangerous atmospheric weather events, resistant to changing measurement conditions,” 2019 Russ. Open Conf. on Radio Wave Propagation (RWP), Kazan, Russia, July 1–6, 2019, DOI: 10.1109/RWP.2019.8810166.

  22. A. M. Shutko, Microwave Radiometry of the Water Surface and Soil, Nauka, Moscow (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Fedoseeva.

Additional information

Translated from Izmeritel'naya Tekhnika, No. 4, pp. 44–50, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, E.V., Shchukin, G.G. & Rostokin, I.N. Calibration of a Tri-Band Microwave Radiometric System with Background Noise Compensation. Meas Tech 63, 301–307 (2020). https://doi.org/10.1007/s11018-020-01787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01787-z

Keywords

Navigation